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4 Primary Grants with 2 “Offshoots”

CHRP – Estuarine Susceptibility to Nutrient Pollution 

NGOMEX models (w/Chesapeake Bay models)

Hypoxia Model Transition to Operations

ECOFOR - Lake Erie  (w/Lake Erie HAB models)



CHRP - Susceptibility to Nutrient Pollution 
with Howarth, Breitburg, Alexander, plus several postdocs and associates

East Coast Estuarine Eutrophication 

4 components 

Estuarine, fisheries, and 2 watershed models

Significant science contributions in all 4 areas

But integration was a challenge

Large, diverse geography

Significant model time resolution mismatches

Geographically dispersed investigators
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CHRP - Susceptibility to Nutrient Pollution 
with Howarth, Breitburg, Alexander, plus several postdocs and associates

East Coast estuarine eutrophication 

4 components 

Estuarine, fisheries, and 2 watershed models

Significant science contributions in all 4 areas

Important scientific contributions, but integration was a challenge

Large, diverse geography

Significant model mismatches in temporal resolution

Geographically dispersed investigators



Gulf of Mexico models 
with Evans, Obenour, Bertani, Liu, Rabalais, Turner

Annual forecasts started in 2002; updated and improved each year

Moved to Bayesian formulation in 2009
Added hypoxic volume forecasts in 2013

Developed strong track record

Built and added to NOAA’s annual ensemble forecasts

Model-based scenarios guided various Gulf Hypoxia Action Plans



Annual Forecasts
Response Curves for Task Force

Track Record

Compared to other models (Scavia et al. 2004)

Explored N vs. P control (Scavia and Donnelly 2007)

Explored potential climate impacts (Donner and Scavia 2007)

Predict impacts of oil drilling produced water (Bierman et al. 2007)

Explored increasing sensitivity to N loads (Liu et al. 2010)

Quantify Impacts of stratification and nutrients (Obenour et al. 2012)

Assessing biophysical controls (Obenour et al. 2015) 

Other Model Uses



Formal statistical ensemble

59% N reduction to reduce hypoxia to 5,000 km2

Interim 20% goal reduces it 18% over long term 

But, at least 25% reduction needed to be 95% sure 
of observing any reduction between 2 consecutive 

5 year assessments.



Chesapeake Bay models 
With Bertani, Evans

Built in as adjunct to Gulf grant (similar model)

Forecasts started in 2007 

Moved to Bayesian formulation in 2009
Identified regime shift consistent with observations

Tested TMDL impact of main stem hypoxia

Bioscience retrospective emphasized model results drove policy attention



Annual Forecasts
Response Curve

Track Record Impact on Awareness

Regime Shift



Hypoxia Model Transition
with Obenour, Forrest, Testa, Turner

Four Very different Gulf Models (Scavia, Obenour, Forrest, Turner) 

Worked with NOAA on transition to operations plan
• 2017 forecast successfully done in parallel with NOAA
• Prepared to turn them over to NOAA for 2018
• PNAS article documented approach and scenario application

Two Chesapeake Bay Models (Scavia, Testa)
Not yet part of NOAA transition planning
2015 – 2017 hypoxia (Scavia) & anoxia (Testa) forecasts
Progress tracked by Univ. Maryland “EcoCheck” website



http://ian.umces.edu/ecocheck/



Lake Erie ECOFOR
with Allan, Arend, Bartell, Beletsky, Bosch, Brandt, Briland, Daloğlu, DePinto, Dolan, Evans, 

Farmer, Goto, Han, Höök, Knight, Ludsin, Mason, Richards, Roberts, Rucinski, Rutherford, 

Schwab, Sesterhenn, Zhang, Zhou, + many students and other postdocs

Focus: Lake Erie Central Basin hypoxia

3 components: watersheds, lake ecosystem, fisheries

Very significant progress in all three areas 

Integration was easier and Influence was powerful 

International Joint Commission
Great Lakes Fisheries Commission
EPA, Environment Canada
Healing our Waters Coalition
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Synthesis: 2014 Best Paper of the Year

Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B. Brandt, R. D. Briland, I. Daloğlu, J. V. DePinto, D. M. 
Dolan, M. A. Evans, T. M. Farmer,D. Goto, H.Han, T. O. Höök, R. Knight, S. A. Ludsin, D. Mason, A. M. Michalak, R. P. Richards, 
J. J. Roberts, D. K. Rucinski, E. Rutherford, D. J. Schwab, T. Sesterhenn, H. Zhang, Y. Zhou. 2014. Assessing and addressing the 
re-eutrophication of Lake Erie: Central Basin Hypoxia. J. Great Lakes Res. 40: 226–246



Document 1990s Hypoxia Resurgence 
(Zhou et al.)

Document Historical Loads (Dolan et al.) Identify Current Primary P Sources 
(Scavia Team)



Fisheries Effects: Oxy-Thermal Squeeze  
(HÖÖk et al.)

Response Curve to Set Targets 
(Rucinski et al.)

Land-use Load Reduction Strategies 
(Bosch et al.)



Lake Erie ECOFOR
with Allan, Arend, Bartell, Beletsky, Bosch, Brandt, Briland, Daloğlu, DePinto, Dolan, Evans, 

Farmer, Goto, Han, Höök, Knight, Ludsin, Mason, Richards, Roberts, Rucinski, Rutherford, 

Schwab, Sesterhenn, Zhang, Zhou, + many students and other postdocs

Focus: Lake Erie Central Basin hypoxia
3 components: watersheds, lake ecosystem, fisheries
Very significant progress in all three areas (pubs, examples)

Integration was easier because it focused on one system and teams 
were geographically connected

Influence was powerful - New International P load Targets 
International Joint Commission – Lake Erie Priority Report
Great Lakes Fisheries Commission – Technical Committees
EPA, Environment Canada – GL Water Quality Agreement
Healing our Waters Coalition – Great Lakes Advocates



Lake Erie HAB models 

with Obenour, Bertani, Stow, Gronewold

Built as adjunct to ECOFORE 

Bayesian hierarchical formulation

HAB as function of phosphorus load

First to account for both model and observation error

First to identify increasing sensitivity to loads

Contributes to NOAA’s annual HAB ensemble forecasts

Used in setting new US-Canada GLWQA phosphorus loads



Annual Forecast team feeds NOAA Ensemble

Track Record

Response Curves guide 
GLWQA load targets

Increasing Sensitivity



Synthesis 
Scavia, D., J.V. DePinto, I. Bertani. 2016. A Multi-model approach to evaluating target phosphorus loads for Lake Erie. J. Great Lakes

Res. 42: 1139-1150

Central Basin Hypoxia Models
Zhang, H., L. Boegman, D. Scavia, D. A. Culver. 2016. Spatial distributions of external and internal phosphorus loads in Lake Erie and 

their impacts on phytoplankton and water quality. J Great Lakes Res. 42: 1212-1227

Bocaniov, S.A, L.F. Keon, Y.R. Rao, D.J. Schwab, D. Scavia. 2016 Simulating the effect of nutrient reduction on hypoxia in a large lake 
(Lake Erie, USA-Canada) with a three-dimensional lake model. J. Great Lakes. Res 42: 1228-1240

Rucinski, D., DePinto, J., Beletsky, D., Scavia, D. 2016 Modeling hypoxia in the Central Basin of Lake Erie under potential phosphorus 
load reduction scenarios. J. Great. Lakes Res. 42: 1206-1211

Bocaniov, S. and D. Scavia 2016 Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three-dimensional 
dynamic models to enhance lake management criteria. Water Resources Res. (Supplemental Information) 52: 4247-4263

Western Basin HAB Models
Bertani, I., C. E. Steger, D. R. Obenour, G. L. Fahnenstiel, T. B. Bridgeman, T. H. Johengen, M. J. Sayers, R. A. Shuchman, D. Scavia. 

2016. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Science of the Total Environment 
575: 294-30

Bertani, I, D.R. Obenour, C. E. Steger, C. A. Stow, A. D. Gronewold, D. Scavia 2016. Probabilistically assessing the role of nutrient loading 
in harmful algal bloom formation in western Lake Erie. J Great Lakes. Res. 42: 1184:1192

Obenour, D.R. A.D. Gronewold, C.A. Stow, and D. Scavia 2014 Using a Bayesian hierarchical model with a gamma error distribution to 
improve Lake Erie cyanobacteria bloom forecasts. Water Resources Res.

ECOFORE Contributions to new GLWQA Nutrient Load Targets
Special Issue of J. Great Lakes Res.



Worth noting

Ecofore began in 2005:
• NCCOS saw an emerging issue and wanted to get ahead of the curve
• At the time, rare for a Federal agency to support competitive GL research
• Ecofore results & capabilities in place two years before the poop hit the fan
• Well positioned for leadership to guide new GLWQA load reductions

Since then, building on Ecofore, we have had grants from:
• NSF Water, Sustainability, and Climate
• NSF SEES: Enhancing sustainability in communities threatened by HABs
• NOAA/COCA: Enhancing awareness of Lake Erie climate impacts
• EPA/Environment Canada: Multi lake model effort to guide load targets
• Joyce/Erb Foundations: Multi watershed model effort to guide reduction actions
• EPA: Evaluating Pay for Performance approach in agriculture



Reviewing Results from 4 Primary Grants 

with 2 “offshoots”

CHRP - Susceptibility to Nutrient Pollution 

ECOFOR - Lake Erie  (w/Lake Erie HAB models)

Gulf of Mexico GOMEX models (w/Chesapeake Bay models)

Hypoxia Model Transitions 



Hypoxia Modeling, Nutrient Reduction Targets, and 

Stakeholder Engagement (Northern Gulf of Mexico)

Nancy Rabalais 

Louisiana State University

Louisiana Universities Marine Consortium

Alan Lewitus

NOAA National Ocean Service

National Centers for Coastal Ocean Science

NCCOS HAB and Hypoxia Portfolio Review

26 February 2018, Silver Spring, MD



Hypoxia Task Force

n now > 600
Data from Water Resources Inst.

500 km
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5 Federal Agencies 

and Tribes:

• US Army Corps

• US EPA

• USDA

• USGS

• NOAA

• National Tribal 

Water Council

12 State Agencies:

• Arkansas

• Missouri

• Iowa

• Tennessee

• Minnesota

• Indiana

• Ohio 

• Louisiana

• Illinois

• Mississippi

• Kentucky

• Wisconsin



2000 CENR state 

of knowledge 

report

2001 Hypoxia 

Action Plan

2008 EPA Science 

Advisory Board 

Hypoxia Report

2008 Gulf 

Hypoxia 

Action Plan

2004-2008 Science 

Reassessment

Adaptive Management 

Framework

2012-2013 Science 

Reassessment

2013 

Reassessment 

Report

Hypoxia Task Force Action Plans



Workshops to Inform Hypoxia Task Force & other Gulf 

Management Efforts

Year Theme

2006 Gulf Science Symposium – 2007 reassessment of Action Plan

2007 Monitoring

2007 Ecological Impacts

2010* Fisheries Impacts, Monitoring, Communication

2011* Monitoring and Modeling

2011 Miss River Diversions

2012* Living Resource Impacts, Biogeochemical Processing – for 

Action Plan reassessment

2013* Glider Applications, Scenario Forecast Modeling

2014* Miss River Diversions/Hypoxia Interaction

2016* Monitoring

2018* Monitoring (CHAMP)

2018 Fisheries Effects

*Annual NOAA/NGI Hypoxia Research Coordination Workshops



Monitoring



Long-term Monitoring of Hypoxic Zone Areal Extent

Coastal Goal: Reduce 5-year 

running average size of the 

Gulf hypoxic zone to 5,000 

km2 by 2035

2017 Hypoxic Zone areal extent = 22,720 km2

From Nancy Rabalais (LSU/LUMCON)
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Goal:  Identify and coordinate partner interests for establishing a 

cooperative sustainable monitoring program for the Gulf hypoxic zone 

that achieves management-driven objectives.

Core principles:

• Management Outcomes - monitoring requirements are driven by 

management needs;

• Broad User Community - the monitoring program will extend beyond 

the hypoxic zone region, and integrate with monitoring programs 

that target other interrelated issues important to ecosystem 

conservation and restoration;

• Cooperative Support Network – cooperative support from multiple 

partners with diverse interests is critical to sustainability of a 

comprehensive and robust monitoring program.



Management Need: Measure progress towards the 
Coastal Goal of the Hypoxia Task Force Action Plan

Management Need: Evaluate the overall nutrient 
reduction required to reduce the hypoxic zone

Interpolation
Analysis

Hypoxic Zone Areal Extent

Model Guidance on Nutrient 
Reduction Targets
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Monitoring Requirement:  Mid-summer 
shelfwide ship survey

Monitoring Requirement:  Riverine nutrient 
loading and discharge data



Monitoring Requirements for Management Products

Requirement Collaborators Support

Mid-summer shelf-wide ship survey 

west of Mississippi Delta

LSU/LUMCON NOAA NCCOS

Nutrient monitoring and annual and 

spring P and N loading estimates from 

Miss/Atchafalaya River Basin

USGS USGS

Daily discharge monitoring USACE USACE

Maintain Hypoxia Data Portal NOAA NCEI

IOOS GCOOS

NOAA NCEI

IOOS GCOOS



Hypoxia Monitoring Workgroups for the Cooperative 

Hypoxia Assessment and Monitoring Program (CHAMP) 

Workgroup Lead(s)

Louisiana Angelina Freeman (LA CPRA), Dubravko Justić (LSU)

Mississippi/Alabama Steve Ashby (MSU/NGI), Stephan Howden (USM), Brian 

Dzwonkowski (DISL)

Texas Steve DiMarco (TAMU)

Autonomous Vehicles Steve DiMarco (TAMU)

Fisheries Kevin Craig (NOAA), Chris Brown (NOAA)

Hypoxia Task Force Katie Flahive (EPA), Danny Wiegand (EPA)

Ocean Acidification Barb Kirkpatrick (GCOOS), Nancy Rabalais (LSU/LUMCON), 

Steve DiMarco (TAMU)

Gulf Restoration Steve Giordano (NOAA), Becky Allee (NOAA)



Scenario Forecast Modeling

See Don Scavia presentation

Nutrient reduction targets in 2001 and 2008 HTF Action Plans informed by 

scenario forecast models



Task Force Goals

• Coastal Goal: reduce the five-year running average areal extent of the 

Gulf of Mexico hypoxic zone to less than 5,000 km2 (1,928 mi2) by 

2035;

• an Interim Goal of a 20% reduction of N and P loading by 2025 is a 

milestone for immediate planning and implementation actions…

Watersheds 

contributing the 

highest nitrogen yields 

to the Gulf 



Scenario Forecast Modeling

See Don Scavia presentation

Model Type Modelers

Statistical regression Gene Turner (LSU)

Streeter-Phelps adaptation Don Scavia (U. Michigan)

Bayesian biophysical Dan Obenour (NCSU)

Statistical regression David Forrest (VIMS)



Scenario Forecast Modeling

Model Type Modelers

Statistical regression Gene Turner (LSU)

Streeter-Phelps adaptation Don Scavia (U. Michigan)

Bayesian biophysical Dan Obenour (NCSU)

Statistical regression David Forrest (VIMS)

Hydrodynamic/biogeochemical Katja Fennel (Dalhousie)

Rob Hetland (TAMU) 

Dubravko Justić (LSU)



Models confirmed the importance of a                                                                         

dual nutrient reduction strategy:

– Targeting N alone would require a ~60%                                                                            

reduction to reach 5,000 km2 goal;

– Targeting both N and P would require a                                                                                       

48% reduction of each nutrient, close to the                                                                              

45% reduction recommended in 2008 Action                                                                            

Plan.
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• 3D Model simulations showed that the sensitivity of changes in 

hypoxia to nutrient load reductions is variable – reaching the 20% 

interim nutrient reduction goal will not reduce hypoxia significantly, 

but will bring us closer to the point where the amount of hypoxia 

reduction per unit nutrient reduction increases - i.e. moving beyond 

20% reduction will have an impact on the size of the hypoxic zone
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3D Time Variable Models

Applications:

•HTF guidance on nutrient reduction goals 

•Hypoxic zone annual characterization presented to HTF 

•Effect of Miss River Diversions on nutrient loading/hypoxia

•Ecological impacts

•Future projections of climate effects



1. ROMS Hydrodynamic Model

2. FVCOM Hydrodynamic Model

Simulated 3D view at midpoint 

of July 2017 ship survey

Model Simulations of 2017 Hypoxic Zone Dynamics

NOAA supported modelers:

•Katja Fennel (Dalhousie U)

•Dubravko Justić (LSU)

•Robert Hetland (Texas A&M)

Biogeochemical model coupled to:



Cindy Emily Harvey Nate

Model Simulations of 2017 Hypoxic Zone Dynamics

Storm Events:



-- June 20, 2017 –

NOAA, USGS and partners predict third largest Gulf of Mexico 

summer ‘dead zone’ ever

Federal scientists forecast that this summer’s Gulf of Mexico dead zone – an area 

of low to no oxygen that can kill fish and other marine life – will be approximately 

8,185 square miles [21,199 square kilometers], or about the size of New Jersey.

-- August 2, 2017 –

Gulf of Mexico ‘dead zone’ is the largest ever measured

Scientists have determined this year’s Gulf of Mexico “dead zone,” is 8,776 

square miles [22,720 square kilometers], an area about the size of New Jersey. 

It is the largest measured since dead zone mapping began there in 1985.



Press Releases of Forecast and Measured Size



Summary

• Providing management guidance built on years of research that 

developed a series of linked statistical, two-dimensional and three-

dimensional models and supportive field efforts that: 

– couple the Mississippi River watershed with the northern Gulf of 

Mexico, 

– explain diverse synergistic influences on the physical and 

biological factors in the northern Gulf that control the development 

of hypoxia, and 

– provide improved forecasting tools to inform hypoxia mitigation 

strategies. 

• Recent emphasis on transitioning of monitoring requirements and 

modeling tools to operations

• Strong network of researchers, managers, and stakeholders, and 

extensive outreach at multiple levels
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Trend Scenarios 

Coupling between hydr/biogeoch models and ecological models is 

needed to capture environmental forcings of hypoxia and its effects;

Ecological Impacts – Kevin Craig Talk



The End

• Next up –

Don Scavia (University of Michigan). Hypoxia modeling, 

relationship with nutrient loading, water quality targets, and 

transition planning (Chesapeake Bay, Lake Erie, Gulf of Mexico) 
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Management Need: Provide comprehensive space/time 
characterization of hypoxic zone and controlling factors 

3-D Time Variable Hypoxic Zone 
Characterization

0

0.4

0.8

1.2

0 2 4 6 8

Dissolved Oxygen (mg L-1)

G
ro

w
th

 R
at

e 
(m

m
/d

ay
)

Living Resource and Habitat Impacts

Ecological Model 
Analysis

DataObservations

3-D Model
Analysis

DataObservations

Management Need: Determine impacts of hypoxia 
on Gulf of Mexico living resources, habitats, 
fisheries, economies

Monitoring Requirement: Cruises, Gliders, Moorings

Monitoring Requirements are driven by Management Products
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Nutrient        Changes
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Management Need: Evaluate strategic management 
questions related to nutrient reductions including timing, 
input location, nutrient type, and impacts of climate change
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Year Modeler

Predicted Areal 

Extent (km2)

Observed Areal 

Extent (km2)

2007 Turner 22,127 20,480

2008 Turner & Scavia 22,404 21,764

2009 Turner & Scavia 19,325 - 21,935 8,240*

2010 Turner & Scavia 16,861 - 20,233 18,400

2011 Turner & Scavia 22,049 - 24,438 17,680

2012 Turner & Scavia

Turner (sediment legacy effect)

3,371

16,117

7,480

2013 Turner & Scavia 18,900 - 22,207 15,120

*Persistent westerly winds for weeks before cruise “piled up” hypoxic water along SE LA shelf



Year Modeler

Predicted Areal 

Extent (km2)

Observed Areal 

Extent (km2)

2014 Turner & Scavia & Forrest 12,018 - 14,807 13,080

2015 Turner & Scavia & Forrest & 

Obenour

14,201 16,760

2016 Turner & Scavia & Forrest & 

Obenour

15,276 *

2017 Turner & Scavia & Forrest & 

Obenour

21,199 22,720

*2016: model simulations of mid-summer areal extent were 13,900 km2

(ROMS) and 21,100 km2 (FVCOM)
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Project	  Investigators	  
•  Candace	  Ovia+,	  GSO	  
•  Daniel	  Codiga,	  GSO	  
•  James	  Kremer,	  UCONN	  
•  Jaime	  Vaudrey,	  UCONN	  
•  Mark	  Brush,	  VIMS	  
•  Sco+	  Nixon,	  GSO	  
•  Chris	  Kincaid,	  GSO	  
•  David	  Ullman,	  GSO	  
•  Warren	  Prell,	  Brown	  University	  
•  David	  Murray,	  Brown	  University	  



Project	  Goals	  
•  Advance	  understanding	  of	  nutrient	  loading	  and	  circulaRon	  processes	  
that	  dictate	  Narraganse+	  Bay	  hypoxia,	  and	  assess	  their	  relaRve	  
importance;	  	  

	  
•  Implement	  mulRple	  modeling	  approaches	  to	  develop	  tools	  for	  (i)	  
evaluaRng	  the	  response	  of	  hypoxia	  to	  alternaRve	  management	  
scenarios	  and	  climate	  change,	  and	  (ii)	  enhanced	  predicRve	  
capabiliRes.	  	  

•  Engage	  all	  stakeholder	  and	  make	  all	  informaRon	  and	  tools	  available	  
to	  them	  on	  a	  regular	  basis.	  



Observational	  Program	  

•  Document	  the	  nutrient	  reducRon	  by	  measuring	  standing	  stock	  
concentraRons	  of	  nutrients	  in	  the	  surface	  waters	  of	  Narraganse+	  Bay;	  

•  Document	  ecosystem	  producRvity	  and	  hypoxia	  changes	  to	  nutrient	  
reducRon;	  

•  Measure	  physical	  parameters	  such	  as	  currents	  and	  verRcal	  mixing	  to	  
improve	  the	  ROMS	  circulaRon	  model	  for	  Narraganse+	  Bay.	  
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Primary	  producRon	  pa+erns	  in	  the	  Bay	  change	  with	  nitrogen	  reducRon.	  

Figure	  from	  Jason	  Krumholz.	  
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Wet	  
years:	  
Gray	  bars	  

50%	  	  
Load	  	  

reduc=on	  
reached	  

1.4	  mg	  L-‐1	  

Most	  severe	  hypoxia	  mostly	  limited	  to	  Greenwich	  Bay	  



Modeling	  Program	  
	  

	  	  

•  Empirical	  modeling	  

•  Refine	  material	  exchange	  methods	  in	  two	  ecological	  models	  using	  1)	  
the	  ROMS	  circulaRon	  model	  and	  2)	  a	  box	  model	  for	  circulaRon;	  

•  Validate	  the	  General	  Ecosystem	  Model	  and	  the	  Ecosystem	  Box	  
Models;	  	  

•  Model	  Management	  and	  climate	  scenarios	  and	  develop	  user-‐
friendly	  version	  of	  the	  model	  for	  use	  by	  managers.	  



Empirical	  modeling	  
•  Using	  Rme	  series	  D.O.	  obs.	  (Codiga	  et	  al.	  2009)	  	  
•  MulRple	  linear	  regressions	  with	  observed	  biological/physical	  
parameters	  
•  Temp,	  riverflow,	  spring/neap,	  straRficaRon	  

•  Conclusion:	  Spring/neap	  weakly	  important	  
•  Conclusion:	  River	  flow	  (straRficaRon)	  is	  strongest	  driver	  of	  inter-‐
annual	  variability	  	  



Simula=on	  Modeling:	  Two	  Approaches	  



MODEL	  RESULTS	  	  







Comparison	  of	  Output	  from	  EcoGEM	  and	  EcoOBM	  



EcoOBM	  VerificaRon	  



EcoOBM:	  Predicted	  decrease	  in	  low	  oxygen	  events	  with	  different	  levels	  of	  nutrient	  	  
reducRon.	  



Stakeholder	  Program	  

•  Conduct	  targeted	  meeRngs	  with	  Environmental	  Mangers;	  

•  Conduct	  an	  annual	  workshop	  to	  announce	  findings	  of	  the	  project	  
and	  engage	  advice	  from	  the	  stakeholder	  community.	  





Summary	  
	  
Data	  observaRons	  indicate	  the	  50%	  	  managed	  nutrient	  reducRon	  was	  achieved	  and	  	  
resulted	  in	  a	  30%	  reducRon	  in	  primary	  producRon.	  	  A	  trend	  of	  a	  30%	  reducRon	  in	  hypoxia	  	  
is	  not	  	  yet	  staRsRcally	  significant.	  
	  
Two	  models	  have	  been	  developed	  to	  predict	  the	  summer	  low	  oxygen	  events	  in	  	  
Narraganse+	  Bay.	  	  One	  uses	  the	  detailed	  circulaRon	  dynamics	  of	  the	  ROMs	  model	  	  
to	  predict	  	  oxygen	  during	  a	  wet	  and	  a	  dry	  year	  with	  different	  nutrient	  levels.	  	  The	  other	  	  
uses	  a	  coarse	  box	  model	  to	  predict	  circulaRon	  and	  can	  easily	  run	  annual	  oxygen	  	  
predicRons	  with	  different	  nutrient	  levels.	  	  Both	  models	  have	  been	  inter-‐compared,	  data	  
verified	  and	  exhibit	  acceptable	  skill	  levels.	  	  Both	  models	  indicate	  that	  some	  hypoxia	  will	  	  
conRnue	  at	  a	  50%	  reducRon	  in	  nutrients	  and	  that	  a	  75%	  reducRon	  will	  be	  necessary	  to	  	  
further	  decrease	  hypoxia.	  
	  
R	  I	  DEM	  managers	  have	  access	  to	  both	  models	  but	  for	  the	  Rme	  being	  prefer	  observaRons	  
to	  models.	  	  Thus	  we	  have	  the	  contract	  from	  RI	  DEM	  to	  maintain	  the	  DEM	  porRon	  of	  the	  
monitoring	  network	  and	  manage	  data	  from	  the	  monitoring	  network	  of	  fixed	  sites	  and	  
buoys	  to	  assess	  water	  quality	  oxygen	  levels.	  	  	  
	  
DEM	  conRnues	  to	  evaluate	  the	  impacts	  of	  the	  50%	  nutrient	  reducRon	  and	  faces	  criRcism	  	  
From	  fishing	  industry	  interests	  for	  making	  the	  Bay	  “too	  clean”.	  
	  
.	  



Evalua=on	  Criteria	  for	  the	  NarraganseJ	  Bay	  CHRP	  program	  (2005-‐2016)	  
	  
Quality:	  	  48+	  presentaRons;	  28	  publicaRon;	  6	  PhD	  dissertaRons;	  3	  Master’s	  Theses;	  
	  
EcoGem	  User’s	  Guide,	  Jaime	  Vaudrey	  
	  
Online	  EcoOBM,	  Mark	  Brush	  
	  
Relevance:	  	  	  
1-‐Up-‐to-‐date	  informaRon	  on	  nutrient	  concentraRons,	  primary	  producRon,	  water	  clarity,	  
	  bay	  circulaRon,	  and	  summer	  hypoxia	  distribuRon,	  intensity	  and	  duraRon.	  
	  
2-‐Two	  ecological	  and	  circulaRon	  models	  able	  to	  predict	  oxygen	  concentraRon	  spaRally	  
and	  temporally	  in	  Narraganse+	  Bay.	  
	  
Performance:	  
ConRnuing	  stakeholder	  engagement	  (NOAA,	  NBEP,	  Baird	  Symposium,	  RI	  C-‐AIM	  program,	  
RI	  DEM).	  
	  



Hypoxia Impacts on Living 
Resources and Implications for 

Management 

J. Kevin Craig

NOAA Southeast Fisheries Science Center
Beaufort Laboratory



NGOMEX 2009: Modeling Reproductive and Population Impacts of Hypoxia in the 
Northern Gulf of Mexico.

• PIs and Collaborators: Peter Thomas, (UT), Kenneth Rose (LSU), Dubravko Justic (LSU), 
Kevin Craig (FSU), Thomas Grothues (Rutgers).

• 24 peer-reviewed papers since 2011

NGOMEX 2009: Effects of Hypoxia on Harvest Dynamics and Economics of the Shrimp 
Fishery in the Northwestern Gulf of Mexico. 

CHRP 2005: Linking Hypoxia-induced Habitat Degradation to Fishery Outcomes: A 
Bioeconomic Approach Based on Brown Shrimp

FATE 2012: (leveraged): Effect of Shelf Hypoxia on the Gulf Menhaden Fishery and 
Implications for Stock Assessment.

• PIs and Collaborators: Martin Smith (Duke), Kevin Craig (FSU), Lori Bennear (Duke), 
James Nance (NOAA SEFSC)

• 18 peer-reviewed papers since 2010

Projects and Peer-Reviewed Papers



Demersal fish and crustacean biomass 
‘pre-hypoxia’ (1961-1965)

Making the Link to Living Resources

Darnell et al. (1983)

 Gulf hypoxic zone overlaps in time and space with:
• Region of highest productivity of fish and invertebrates
• Highest valued fishery in the Gulf (penaeid shrimp)
• Highest biomass fishery in the Gulf (Gulf menhaden)

 Little research on potential effects on managed resources (i.e., fisheries) 
prior to early to mid-2000s



General Approach

Spatial responses to hypoxia 
(avoidance, spatial distn)

Effects on population vital rates
(growth, reproduction, mortality)

Management Applications

Population-Level Effects Economic Effects Fisheries Assessment



Fishery-Independent SEAMAP Survey (June-July)

20 m

80 m

Brown Shrimp Spatial Distribution

CPUE
95%

75%

50%

25%

0

0.2

0.4

0.6

0.8

1

4
-9

9
-1

8

1
8
-2

7

2
7
-4

3

4
3
-6

4

6
4
-1

1
0

S
ca

le
d
 C

a
tc

h
 R

a
te

Depth Bin (m)

female

male

Low to moderate hypoxia
(< 7,000 km2)

20 m

80 m

0

0.2

0.4

0.6

0.8

1

4
-9

9
-1

8

1
8
-2

7

2
7
-4

3

4
3
-6

4

6
4
-1

1
0

S
ca

le
d
 C

a
tc

h
 R

a
te

Depth Bin (m)

Severe hypoxia
(13,000-17,000 km2)



Atlantic Croaker Spatial Distribution
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Aggregation Near Hypoxic Edge
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Spatial Responses to Hypoxia

 Sub-lethal and indirect effects are important 
• Organisms occupy moderately low DO (2-4 mg L-1) in the field
• Occupy DO levels where sub-lethal effects observed in lab
• Habitat loss induces strong aggregations near hypoxic edges

Craig et al. (2010, 2012, 2013)

 Mobile organisms effectively avoid low DO
• Field-estimated avoidance thresholds range from 1-2 mg L-1 across species

• Avoidance thresholds are above laboratory-based lethal thresholds

 Primary Limitation
• Based mostly on point-in-time surveys 
• Spatio-temporal dynamics of organism (and fishery response) to seasonally 

dynamic oxygen conditions not well-known



General Approach

Spatial responses to hypoxia

Effects on population vital rates
(croaker reproduction)

Management Applications

Population-Level Effects Economic Effects Fisheries Assessment
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 Growth impairment
• Elevated growth inhibitors (IGF binding 

protein (IGFBP-1, IGFBP-2)
• IGFBP increased and growth decreased 

over 20 wks hypoxia exposure in the lab

• Rahman and Thomas (2018)

 Hypoxia exposure biomarkers elevated
• Hypoxia-Inducible Factor (HIF-α) an oxygen 

sensitive transcription factor- regulates 
metabolic adaptation to hypoxia

• Rahman and Thomas (2018)

 Masculinization of females
• Sperm detected in 25% ovaries
• Decrease in aromatase activity
• Thomas and Rahman (2011)

Aromatase inhibition

Hypoxia Effects on Croaker Reproduction & Growth



• Spatially explicit, IBM
‒ Follows 7 stages to age 8
‒ September 1 birthday
‒ Model year begins Sept. 1
‒ Each year 365 days long

• Hourly processes
‒ Growth
‒ Mortality
‒ Reproduction
‒ Movement (routine & avoidance)

• Environmental conditions simulated on a 2-D spatial grid
‒ Climatological temperature
‒ Climatological surface Chl-a
‒ Dissolved oxygen from 3-D hydrodynamics-WQ model

Adult

Late Juvenile (< 180mm)

Early (< 97mm)

Juvenile

Estuary Larva

Ocean Larva

Yolk Sac Larva 

Egg

12

Atlantic Croaker Population Model
Project long-term popn consequences of hypoxia exposure



 Grid encompasses La. and N. 
Texas coast

 3-D coupled hydrodynamic-
water quality model

• FVCOM + WASP

• 1-10 km horizontal 

• 0.2-2.0 m vertical

• Calibrated and assessed 
using multiple independent 
data sources for 2002

13

Justic and Wang. 2014.  Continental Shelf Research

Dissolved Oxygen
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Rose et al. (2017a)

Hypoxia Effect on Long-Term Population Abundance

• Random times series of idealized ‘severe,’ ‘moderate,’ and ‘mild’ hypoxic years in 
proportion to their historical occurrence

• Response dominated by the effect of reduced fecundity

12% Reduction



increase DO due to 
reduced nutrients

Nutrient-Hypoxia Tradeoffs

• Magnitude of hypoxia effect is larger (~25% decline) with the more realistic DO (blue)

• Reductions in nutrients result in further croaker declines due to decreased food (red)

• These reductions in food availability can be offset by relatively modest increases in DO 
associated with the lower nutrients (gray lines) 

• Pos. effect of reduced hypoxia outweighs neg effect of reduced food (preliminary conclusion)

PD:Present day food and hypoxia conditions
Normoxia: present day nutrients and no hypoxia

Rose et al. (2017b)
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NGOMEX 2016 (new)

 Link IBM to 3D FVCOM and WASP models 
• Predictions of Chl (food availability) and DO
• Potential for vertical movement

 Link watershed and river diversion  models (DLEM 
and Delft 3D) to FVCOM

• supply nutrients and water flow to FVCOM 
• Evaluate diversion scenarios

 Coupled models allow for more seamless 
evaluation of nutrient-hypoxia tradeoffs

 Expand to additional species (Gulf menhaden, 
brown shrimp, red snapper)

D. Justic (LSU), K. Rose (UMCES), E. 
Meselhe (Water Institute), H. Tian 
(Auburn), J. Xu (LSU), L. Huang (LSU), K. 
Craig (SEFSC) 



General Approach

Spatial responses to hypoxia

Effects on population vital rates
(fishing mortality)

Management Applications

Population-Level Effects Economic Effects Fisheries Assessment



How do Fisheries Respond to Hypoxia?
Mine existing fisheries datasets:

 Electronic logbook data on shrimp vessel tow locations
• Maintained by NOAA SEFSC Galveston Lab (2005-2010)
• Random sample of vessels with recorded trawl set locations over the fishing season 

(April to October) 

• 17,843 – 53,242 individual shrimp trawl locations  per year

 Gulf Menhaden Coastal Logbook Program
• Maintained by NOAA SEFSC Beaufort Lab
• 100% catch and effort reporting since 2006
• 75,132 purse seine set locations (2006-2009)

 Merge with survey or model estimates of dissolved oxygen
• Brown Shrimp: SEAMAP survey estimates of bottom DO
• Gulf Menhaden: WQ model output (Fennel et al. 2013)

 Test for effects on fishery response variables (e.g., effort, catch, 
CPUE) using geospatial regression models 



Two Key Finding

 Fishing fleets are responsive to hypoxia (or hypoxia-induced 
effects on target species)

 These shifts in spatial distribution influence catchability (q), 
or the proportion of the stock harvested by a given unit of 
fishing effort—key parameter of stock assessment models
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Green: Decrease in effort when DO is low (positive slope)
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Hypoxia Effects on the Shrimp Fishery
(Results from Geospatial Regression Model)

2005-2010

Purcell et al. (2017)

Galveston Bay



Gulf Menhaden Fishery

• Second largest US fishery by weight (0.5 million metric tons annually)
• Fishery extends from April to November but peaks in June-July
• Mostly prosecuted close to shore (within 5 miles)
• Merged with DO predictions from coupled hydrographic-

biogeochemical model (Fennel et al. 2013) 

Menhaden Purse Seine sets: 2006-2009



increase in response variable with declines in DO

Shift in Spatial Distribution of the Menhaden Fishery

P(fishing) Catch

Effort Catch-per-unit-effort (CPUE)

Under low DO conditions:

• Decrease in catch and effort in regions typically experiencing chronic hypoxia

• Fleet shifts westward, inshore, and eastward when hypoxia is severe 

Langseth et al. 2014)



What are the economic consequences to the 
shrimp fishery?
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Brown shrimp life history

Shrimp Bioeconomic Modeling
Led by Marty Smith (Duke)

Microdata:
• Requires high resolution data on shrimp catches and environmental conditions 

over the course of  a fishing season



Main Results from North Carolina
Neuse River

Pamlico Sound

Harvest losses from hypoxia (1999-2005): 
 Avg losses of 13-21% across the range of models considered (compared to no hypoxia)

 For Neuse-Pamlico system $1.2 million in lost annual revenues 

 Modeling fisher participation (respond to abundance and price) suggests behavioral 
adjustments can partially mitigate this loss 

• 4% annual loss in revenue ($0.3 million annually)

• Daily shrimp catches (NCDMF trip 
ticket program)

• Daily DO (USGS moorings)

Huang et al. (2010, 2012)



Key findings from spatially dynamic bioeconomic model:

1. Net effect of all three processes (q, growth, mortality) on total catch can be pos or  
neg and vary depending on when in the season the system is observed 

2.   Even with perfect info., detecting hypoxia effects in catch data would be difficult

3.   No counterfactual (i.e., control)--What would happen in the absence of hypoxia?

• Shrimp fleet highly mobile and trips can extend over several weeks

• Contamination of potential controls (e.g., Texas fishery)

Is this approach transferable to the Gulf?

======================================

Expect increased harvest of small relative to large shrimp

Catchability, growth, and mortality skew size distn to smaller sizes

Do size-based shrimp prices contain info. on the effects of hypoxia?   

(Smith et al. 2014. Marine Resource Economics 29:111-131)

No….resolution of catch and DO data not sufficient 



Size-Based Prices of Brown Shrimp

• Shrimp are sold in size-based categories based on the number of shrimp per pound

• Price per pound of large shrimp is higher than for small shrimp (different economic value)

• Relative size-based prices are stable in the long-term so that short-term deviations in relative price 
should be random in the absence of intervening effects

• Shrimp prices provide a market-based counterfactual against which to test effects of hypoxia 

Smith et al. (2017)



Demonstrated effect of hypoxia on a major 
commercial fishery  

Main result: 

• When hypoxia is severe, prices of large shrimp increase relative to small shrimp (growth 
overfishing is a key mediating process)

• Result is consistent with known or hypothesized mechanisms: catchability, growth, and 
mortality skew size distributions to smaller sizes so that fewer large shrimp are available 

• Cannot separate out the relative importance of alternative mechanisms with this analysis

• Magnitude of the effect is unknown, but regression model suggests 1000 km2 increase in 
area hypoxia triggers a 1% increase in the relative price of large shrimp

January 2017



Effects on the Gulf Menhaden Stock Assessment

Key Result: Hypoxia may bias management advice from stock assessment models
(Underestimate fishing mortality and overestimate stoc biomass)  



Operating model
“Create Truth”

(2013 assessment)

Simulate the Gulf Menhaden Stock Assessment

Catchability (q): 
• Avg proportion of a stock harvested by a given unit of fishing effort
• Key parameter of stock assessment models used to set catch limits 

Estimation model
assume constant q 

as in current assessment

% Fleet affected:
• 31% (Langseth et al. 2014)

• 100% (max effect)

Proportional to area (Obenour et al. 2013)

Step increase in 
1993

Gradual increase

Back-calculated from the assessment

4 patterns in q

Generate data



 Not accounting for effects of hypoxia:
• Fishing mortality (F) biased low
• Spawning biomass (SSB) biased high
• Magnitude of effect is highly uncertain

 Potential leads to risk-prone management advice

Hypoxia Scenarios

Effects on Fishing and Biomass Reference Points  

F30% reference point SSB30% reference point
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Langseth et al. (2016)



 Primary limitation to understanding hypoxia effects 
on fisheries is the lack of empirically-based, high 
resolution DO data

NGOMEX 2016 (new)
D. Obenour (NCSU), K. Craig (SEFSC)

 Objectives:

• Geostatistical modeling of available DO data to generate within-season 
spatial maps of DO

• Fusion of geostatistical and mechanistic model results to develop optimal 
estimates of hypoxia through time and over multiple sections of the 
Louisiana-Texas Shelf

• Re-evaluate hypoxia effects on the Gulf Menhaden assessment model

• Extend approach to the Brown Shrimp assessment



General Approach

Spatial responses to hypoxia

Effects on population vital rates

Management Applications

Population-Level Effects Economic Effects Fisheries Assessment



Stock Assessment Process for Federally-
Managed Species

SEDAR (Southeast Data, Analysis, Review)

Data

Analysis

Assessment

Report

Management 

Data Workshop: Assemble, QA/QC, Discuss/Summarize 

Indices of abundance, life history (growth curves, maturity ogives), natl mortality

Assessment Workshop: Stock Assessment Modeling

(Catch-age models, Production models, data-limited) 

Summarize Results

Review Review Workshop and SSC review

SEDAR Process:
• Takes about one year
• Highly structured
• Currently does not consider hypoxia
• Purpose: 

• Determine stock status (overfished, 
overfishing)

• Establish re-building plans
• Set short term (1-3 year) catch levels

• See http://sedarweb.org/

Menhaden simulation study led to alternative modeling approach that implicitly 
accounts for hypoxia effects



http://www.aoml.noaa.gov/ocd/ocdweb/ESR_GOMIEA/

Gulf of Mexico Ecosystem Status Report (ESR)
ESR develops and tracks ecosystem drivers, pressures, and state across multiple 

components of the ecosystem



Gulf Integrated Ecosystem Assessment (IEA)

NOAA Ecosystem-Based Fisheries Management 
Policy Statement (published May 2016)

• Defines EBFM and its benefits
• Establish relationship to current legal 

authorities (e.g., MSA, MMPA, ESA, NEPA) 
• Articulate guiding principles

The Ecosystem Status Report is one 
product of the Gulf IEA

Movement toward EBFM in the Gulf

NOAA Fisheries Ecosystem-Based Fisheries 
Management Road Map (published 
November 2016)

Gulf of Mexico Ecosystem-Based Fisheries 
Management Road Map Implementation Plan 
(currently in review)



Thank You



Levels of Ecosystem-Based Management 

Increasing 
interest in 
EBFM in the 
Gulf
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Key Lesson: Detecting hypoxia effects from perfect catch data would be difficult

Growth only
(Dynamic, nonlinear, subtle)

Catchability only
(Non-monotonic) Growth, mortality and catchability

Contamination of controls

• Net effect of hypoxia can be positive or negative

• Direction and magnitude of effect varies over the season

• Mobility of shrimp fleet contaminants (nonhypoxic) controls

Example-1 yr Simulations



Time Series Modeling of Brown Shrimp Prices

Hypothesis:  Relative price of large to small shrimp increases with 
increasing hypoxia severity

Data
• Monthly sizes-based prices (1990-2010; 252 observations)

Covariates
• Hypoxic area and volume
• Diesel fuel price (influences effort--major driver of variable costs)
• Sea surface temperature (could influence supply, i.e., via recruitment)
• Monthly dummy variables

Permutations
• 3 separate large shrimp categories (<15, 15-20, 20-25 count)
• 3 separate (reference) small shrimp categories (30-40, 40-50, 50-67 count)
• Hypoxia area and volume via two alternative interpolation methods

Pricelarge shrimp / Pricesmall shrimp = hypoxia severity + covariates

𝑃𝐿,𝑡
𝑃𝑆, 𝑡

= 𝛼 + 𝛽𝐻𝑘,𝑡 + 𝛾(𝑃𝑠,𝑡 ) + 𝑿𝒕 𝜽 + 𝜖𝐿,𝑡
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• FI trawl and hydrographic survey 
(~300 stations/ yr)

• Interpolate bottom DO from 
annual SEAMAP surveys (June-
July)

• Censor ELB data to match 
temporal scale of DO 
interpolation

• Smooth interpolated surface to 
account for uncertainty in DO 
data and trawl path

• Aggregate tow and DO data to 10 
min x 10 min grid

• Synoptic on a scale of 1-2 weeks 
and 30-40 km 

Shrimp Fishery Electronic Logbooks

Randomly selected 10% of ELB tows Interpolated bottom DO (SEAMAP)

Total tows = 12,067

Total tows = 31,592

Total tows = 17,339

Merged with bottom DO from SEAMAP trawl and hydrographic survey
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Partial Effect of DO on Shrimping Effort
(averaged over space)

2005-2010

Avoidance of limited areas of low DO
• Mouths of major estuaries
• Extension of Miss. Plume west

Some avoidance of low DO
• Hypoxia extends over most of shrimping grounds
• Shrimpers active in and around low DO water

Purcell et al. (2017)



Hypoxia Effects on Fishing Mortality Reference Points  

• Magnitude of the effect is highly uncertain
• Maximum estimates of bias assuming effects persist over the entire fishing 

season (May-Sept)
• Depends strongly on the proportion of the fleet affected by hypoxia
• Need better understanding of within-season spatio-temporal dynamics of 

hypoxia and the fishing process

Langseth et al. (2016)


