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4 Primary Grants with 2 “Offshoots”

CHRP - Estuarine Susceptibility to Nutrient Pollution
NGOMEX models (w/Chesapeake Bay models)
Hypoxia Model Transition to Operations

ECOFOR - Lake Erie (w/Lake Erie HAB models)



CHRP - Susceptibility to Nutrient Pollution

with Howarth, Breitburg, Alexander, plus several postdocs and associates

East Coast Estuarine Eutrophication

4 components
Estuarine, fisheries, and 2 watershed models

Significant science contributions in all 4 areas
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CHRP - Susceptibility to Nutrient Pollution

with Howarth, Breitburg, Alexander, plus several postdocs and associates

East Coast estuarine eutrophication

Important scientific contributions, but integration was a challenge
Large, diverse geography
Significant model mismatches in temporal resolution
Geographically dispersed investigators



Gulf of Mexico models
with Evans, Obenour, Bertani, Liu, Rabalais, Turner

Annual forecasts started in 2002; updated and improved each year
Moved to Bayesian formulation in 2009
Added hypoxic volume forecasts in 2013
Developed strong track record

Built and added to NOAA’s annual ensemble forecasts

Model-based scenarios guided various Gulf Hypoxia Action Plans



Annual Forecasts

2017 Gulf of Mexico Hypoxia Forecast

Donald Scavia', Isabella Bertani', Colleen Long!, Yu-Chen Wang!,
Dan Obenour?

"University of Michigan
INorth Carolina State University

June §, 2017

The Gulf of Mexico annual summer hypoxia forecasts are based on average May
total nitrogen loads from the Mississippi River basin for that year. The load
estimate, recently released by USGS, is 8,048 metric tons per day. Based on that
estimate, we predict the area of this summer’s hypoxic zone to be 20,000 square
kilometers (95% credible interval, 13,500 to 26,500), an “above average year.”

The measured extent this year was 22,750 square kilometers

Our forecast hypoxic volume is 83.1 km?® (95% credible interval, 53.1 to 113.2).

Track Record
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Other Model Uses

Compared to other models (Scavia et al. 2004)

Explored N vs. P control (Scavia and Donnelly 2007)

Explored potential climate impacts (Donner and Scavia 2007)

Predict impacts of oil drilling produced water (Bierman et al. 2007)
Explored increasing sensitivity to N loads (Liu et al. 2010)

Quantify Impacts of stratification and nutrients (Obenour et al. 2012)
Assessing biophysical controls (Obenour et al. 2015)
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Ensemble modeling informs hypoxia management in
the northern Gulf of Mexico

Donald Scavia®™', Isabella Bertani®, Daniel R. Obenour<, R. Eugene TurnerY, David R. Forrest®, and Alexey Katin®
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Formal statistical ensemble
59% N reduction to reduce hypoxia to 5,000 km?

Interim 20% goal reduces it 18% over long term

But, at least 25% reduction needed to be 95% sure
of observing any reduction between 2 consecutive
5 year assessments.




Chesapeake Bay models
With Bertani, Evans

Built in as adjunct to Gulf grant (similar model)
Forecasts started in 2007

Moved to Bayesian formulation in 2009
|Identified regime shift consistent with observations

Tested TMDL impact of main stem hypoxia

Bioscience retrospective emphasized model results drove policy attention



Annual Forecasts

Donald Scavia, Isabella Bertani, Yu-Chen Wang, and Colleen Long

Chesapeake Bay Hypoxic Volume Forecasts

University of Michigan

June 7, 2017

The 2017 Forecast - Given the average Jan-May 2017 total
nitrogen load of 244,519 kg/day, this summer’s hypoxia
volume forecast is 7.9 km’, an above average size for the
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Hypoxia Model Transition
with Obenour, Forrest, Testa, Turner

Four Very different Gulf Models (Scavia, Obenour, Forrest, Turner)

Worked with NOAA on transition to operations plan

e 2017 forecast successfully done in parallel with NOAA
 Prepared to turn them over to NOAA for 2018

* PNAS article documented approach and scenario application

Two Chesapeake Bay Models (Scavia, Testa)
Not yet part of NOAA transition planning
2015 — 2017 hypoxia (Scavia) & anoxia (Testa) forecasts
Progress tracked by Univ. Maryland “EcoCheck” website




Ensemble modeling informs hypoxia management in
> the northern Gulf of Mexico

Donald Scavia®®, Isabella Bertani®, Daniel R. Obenour®, R. Eugene Turnerd, David R. Forrest®, and Alexey Katin®

ecochec

How healthy is your ecosystem?

http://ian.umces.edu/ecocheck/
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Chesapeake Bay Summer Forecast: 2017 v
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Lake Erie ECOFOR

with Allan, Arend, Bartell, Beletsky, Bosch, Brandt, Briland, Daloglu, DePinto, Dolan, Evans,
Farmer, Goto, Han, H60k, Knight, Ludsin, Mason, Richards, Roberts, Rucinski, Rutherford,
Schwab, Sesterhenn, Zhang, Zhou, + many students and other postdocs

Focus: Lake Erie Central Basin hypoxia
3 components: watersheds, lake ecosystem, fisheries

Very significant progress in all three areas
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Document Historical Loads (Dolan et al.)
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Fisheries Effects: Oxy-Thermal Squeeze
(HOOk et al.)
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Lake Erie ECOFOR

with Allan, Arend, Bartell, Beletsky, Bosch, Brandt, Briland, Daloglu, DePinto, Dolan, Evans,
Farmer, Goto, Han, H60k, Knight, Ludsin, Mason, Richards, Roberts, Rucinski, Rutherford,
Schwab, Sesterhenn, Zhang, Zhou, + many students and other postdocs

Integration was easier because it focused on one system and teams
were geographically connected

Influence was powerful - New International P load Targets
International Joint Commission — Lake Erie Priority Report
Great Lakes Fisheries Commission — Technical Committees
EPA, Environment Canada — GL Water Quality Agreement
Healing our Waters Coalition — Great Lakes Advocates




Lake Erie HAB models

with Obenour, Bertani, Stow, Gronewold

Built as adjunct to ECOFORE

Bayesian hierarchical formulation
HAB as function of phosphorus load
First to account for both model and observation error
First to identify increasing sensitivity to loads

Contributes to NOAA’s annual HAB ensemble forecasts

Used in setting new US-Canada GLWQA phosphorus loads



Annual Forecast team feeds NOAA Ensemble Response Curves guide

2017 Western Lake Erie Harmful Algal Bloom (HAB) Forecast GLWAQA load ta rgets
Issued: 13 July 2017

e uv‘”ﬁo& Great Lakes Environmental Research Laboratory 4 8

/Forecast summary: A cyanobacteria HAB of 36,800 metric tons (MT) is predicted for the \
western basin of Lake Erie in 2017, with a 95% predictive interval of 24,400 to 47,800 MT.
The bloom size over the last decade (2007-2016) has averaged 22,000 MT, such that this
year's bloom is likely to be above average. The prediction is based on a probabilistic model
developed by a team of researchers at UM, NCSU, and NOAA GLERL. This is one of
three models used to develop an ensemble bloom prediction (the other models being

Qeveloped by LimnoTech and NOAA NCCOS). The measured HAB extent of 49,493 MT. J
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ECOFORE Contributions to new GLWQA Nutrient Load Targets

Special Issue of J. Great Lakes Res.
Synthesis

Scavia, D., J.V. DePinto, I. Bertani. 2016. A Multi-model approach to evaluating target phosphorus loads for Lake Erie. J. Great Lakes
Res. 42:1139-1150

Central Basin Hypoxia Models
Zhang, H., L. Boegman, D. Scavia, D. A. Culver. 2016. Spatial distributions of external and internal phosphorus loads in Lake Erie and
their impacts on phytoplankton and water quality. J Great Lakes Res. 42:1212-1227

Bocaniov, S.A, L.F. Keon, Y.R. Rao, D.J. Schwab, D. Scavia. 2016 Simulating the effect of nutrient reduction on hypoxia in a large lake
(Lake Erie, USA-Canada) with a three-dimensional lake model. J. Great Lakes. Res 42: 1228-1240

Rucinski, D., DePinto, J., Beletsky, D., Scavia, D. 2016 Modeling hypoxia in the Central Basin of Lake Erie under potential phosphorus
load reduction scenarios. J. Great. Lakes Res. 42: 1206-1211

Bocanioy, S. and D. Scavia 2016 Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three-dimensional
dynamic models to enhance lake management criteria. Water Resources Res. (Supplemental Information) 52: 4247-4263

Western Basin HAB Models

Bertani, I., C. E. Steger, D. R. Obenour, G. L. Fahnenstiel, T. B. Bridgeman, T. H. Johengen, M. J. Sayers, R. A. Shuchman, D. Scavia.
2016. Tracking cyanobacteria blooms: do different monitoring approaches tell the same story? Science of the Total Environment
575:294-30

Bertani, I, D.R. Obenour, C. E. Steger, C. A. Stow, A. D. Gronewold, D. Scavia 2016. Probabilistically assessing the role of nutrient loading
in harmful algal bloom formation in western Lake Erie. J Great Lakes. Res. 42: 1184:1192

Obenour, D.R. A.D. Gronewold, C.A. Stow, and D. Scavia 2014 Using a Bayesian hierarchical model with a gamma error distribution to
improve Lake Erie cyanobacteria bloom forecasts. Water Resources Res.



Worth noting

Ecofore began in 2005:

NCCOS saw an emerging issue and wanted to get ahead of the curve

At the time, rare for a Federal agency to support competitive GL research
Ecofore results & capabilities in place two years before the poop hit the fan
Well positioned for leadership to guide new GLWQA load reductions

Since then, building on Ecofore, we have had grants from:

NSF Water, Sustainability, and Climate

NSF SEES: Enhancing sustainability in communities threatened by HABs
NOAA/COCA: Enhancing awareness of Lake Erie climate impacts
EPA/Environment Canada: Multi lake model effort to guide load targets
Joyce/Erb Foundations: Multi watershed model effort to guide reduction actions
EPA: Evaluating Pay for Performance approach in agriculture
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Hypoxia Modeling, Nutrient Reduction Targets, and
Stakeholder Engagement (Northern Gulf of Mexico)

Nancy Rabalais
Louisiana State University
Louisiana Universities Marine Consortium

Alan Lewitus

NOAA National Ocean Service
National Centers for Coastal Ocean Science

NCCOS HAB and Hypoxia Portfolio Review

26 February 2018, Silver Spring, MD
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Hypoxia Task Force

5 Federal Agencies 12 State Agencies:

and Tribes: « Arkansas
« US Army Corps « Missouri
« US EPA  Jowa
« USDA « Tennessee
« USGS « Minnesota
« NOAA  |ndiana
 National Tribal « Ohio
Water Council ..
 Louisiana
* lllinois
* Mississippi
« Kentucky

* Wisconsin



Hypoxia Task Force Action Plans

Adaptive Management
Framework

2000 CENR state 2001 Hypoxia
of knowledge Action Plan
report

2004-2008 Science
Reassessment

L1950l 20122013 Science
Action Plan 2008 =yt e r=ter

e — 2013
Reassessment
YO8,
g%% Report
2008 EPA Science 2008 Gulf
Advisory Board Hypoxia

Hypoxia Report Action Plan



Workshops to Inform Hypoxia Task Force & other Gulf
Management Efforts

2006 Gulf Science Symposium — 2007 reassessment of Action Plan
2007 Monitoring

2007 Ecological Impacts

2010* Fisheries Impacts, Monitoring, Communication

2011* Monitoring and Modeling

2011 Miss River Diversions

2012* Living Resource Impacts, Biogeochemical Processing — for

Action Plan reassessment
2013* Glider Applications, Scenario Forecast Modeling
2014* Miss River Diversions/Hypoxia Interaction
2016* Monitoring
2018* Monitoring (CHAMP)
2018 Fisheries Effects

*Annual NOAA/NGI Hypoxia Research Coordination Workshops
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Long-term Monitoring of Hypoxic Zone Areal Extent

Bottom-water Area of Hypoxia (D.0. <2 mg/L)
25,000

20,000

5-yr
Coastal Goal: Reduce 5-year 15,000 et
running average size of the
Gulf hypoxic zone to 5,000 10,000
km? by 2035 _
5,000 I ‘
0 |
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Area (square kilometers)

Year

2017 Hypoxic Zone areal extent = 22,720 km?

From Nancy Rabalais (LSU/LUMCON)




Hypoxic Zone Monitoring Activities in Recent Past
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2016 Hypoxic Zone Monitoring Workshop

Goal: Identify and coordinate partner interests for establishing a
cooperative sustainable monitoring program for the Gulf hypoxic zone
that achieves management-driven objectives.

Core principles:

« Management Outcomes - monitoring requirements are driven by
management needs;

 Broad User Community - the monitoring program will extend beyond
the hypoxic zone region, and integrate with monitoring programs
that target other interrelated issues important to ecosystem
conservation and restoration;

 Cooperative Support Network — cooperative support from multiple
partners with diverse interests is critical to sustainability of a
comprehensive and robust monitoring program.



Management Products Informing Mitigation of Hypoxia

Management Need: Measure progress towards the Hypoxic Zone Areal Extent
Coastal Goal of the Hypoxia Task Force Action Plan T 25000 -
=
wewing, g 20000 -
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MonitoringRequirement: Mid-summer § & 0 LI I I I I O O R
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Eo -adapted from data from Nancy Rabalais (LUMCON) & Eugene Turner (LSU)
+ Model Guidance on Nutrient
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Monitoring Requirement: Riverine nutrient
loadlng and dlSCharge data Adapted from figure by Don Scavia (U Mich)




Monitoring Requirements for Management Products

Mid-summer shelf-wide ship survey LSU/LUMCON NOAA NCCOS
west of Mississippi Delta

Nutrient monitoring and annual and USGS USGS
spring P and N loading estimates from
Miss/Atchafalaya River Basin

Daily discharge monitoring USACE USACE

Maintain Hypoxia Data Portal NOAA NCEI NOAA NCEI
I0O0S GCOOS I0O0S GCOOS



Hypoxia Monitoring Workgroups for the Cooperative
Hypoxia Assessment and Monitoring Program (CHAMP)

Workgroup Lead(s)

Louisiana Angelina Freeman (LA CPRA), Dubravko Justi¢ (LSU)

Mississippi/Alabama Steve Ashby (MSU/NGI), Stephan Howden (USM), Brian
Dzwonkowski (DISL)

Texas Steve DiMarco (TAMU)
Autonomous Vehicles Steve DiMarco (TAMU)
Fisheries Kevin Craig (NOAA), Chris Brown (NOAA)
Hypoxia Task Force Katie Flahive (EPA), Danny Wiegand (EPA)

Ocean Acidification Barb Kirkpatrick (GCOQOS), Nancy Rabalais (LSU/LUMCON),
Steve DiMarco (TAMU)

Gulf Restoration Steve Giordano (NOAA), Becky Allee (NOAA)



Scenario Forecast Modeling

See Don Scavia presentation
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10000 - Action Plan

Goal
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N Load Reduction

Nutrient reduction targets in 2001 and 2008 HTF Action Plans informed by
scenario forecast models
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Task Force Goals

« Coastal Goal: reduce the five-year running average areal extent of the

Gulf of Mexico hypoxic zone to less than 5,000 km? (1,928 mi?) by
2035;

 an Interim Goal of a 20% reduction of N and P loading by 2025 is a
milestone for immediate planning and implementation actions...

Total Nitrogen Yields Delivered to Gulf of Mexico

Watersheds
contributing the
highest nitrogen yields
to the Gulf

Total Nitrogen
Yield Delivered
to Gulf of Mexico

High

Miami

USGS SPARROW MAPPER



Scenario Forecast Modeling

See Don Scavia presentation

Statistical regression Gene Turner (LSU)
Streeter-Phelps adaptation Don Scavia (U. Michigan)
Bayesian biophysical Dan Obenour (NCSU)

Statistical regression David Forrest (VIMS)



Scenario Forecast Modeling

Statistical regression Gene Turner (LSU)
Streeter-Phelps adaptation Don Scavia (U. Michigan)
Bayesian biophysical Dan Obenour (NCSU)
Statistical regression David Forrest (VIMS)
Hydrodynamic/biogeochemical Katja Fennel (Dalhousie)

Rob Hetland (TAMU)
Dubravko Justi¢ (LSU)



Nutrient Reduction Guidance from Ensemble of
Scenario Forecast Models

Question 1: What reductions in N and P
loading are needed to shrink the Dead
Zone to 5,000 km? (Coastal Goal)?

25

i --- UM
Targeting _ /syumcon

~. Nalone -~ NCSU

~~~~~ VIMS .
— Efsarbla Scavia et al.

®  Normal weather 2017 PNAS
o Wind/Storm 114:8823-8828

20
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10

Models confirmed the importance of a
dual nutrient reduction strateqgy:

Hypoxic Area (1000 km 2)

— Targeting N alone would require a ~60% ¥ B &4 o8 &
. May N load reduction (%)
reduction to reach 5,000 km? goal; "
Targeting
N and P

w
o

— Targeting both N and P would require a
48% reduction of each nutrient, close to the
45% reduction recommended in 2008 Action
Plan.
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Nutrient Reduction Guidance from Ensemble of
Scenario Forecast Models

Question 2: How much will 20% reductions in N and P loading shrink the
zone (Interim Goal)?

3D Model simulations showed that the sensitivity of changes in
hypoxia to nutrient load reductions is variable — reaching the 20%
interim nutrient reduction goal will not reduce hypoxia significantly,
but will bring us closer to the point where the amount of hypoxia
reduction per unit nutrient reduction increases - i.e. moving beyond
20% reduction will have an impact on the size of the hypoxic zone
&40

c <
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3D Time Variable Models

Applications:

*HTF guidance on nutrient reduction goals

*Hypoxic zone annual characterization presented to HTF
*Effect of Miss River Diversions on nutrient loading/hypoxia
*Ecological impacts

*Future projections of climate effects



Model Simulations of 2017 Hypoxic Zone Dynamics

NOAA supported modelers: Simulated 3D view at midpoint
-Katja Fennel (Dalhousie U) of July 2017 ship survey
*Dubravko Justi¢ (LSU)

*Robert Hetland (Texas A&M) s
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Model Simulations of 2017 Hypoxic Zone Dynamics
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JOINT NEWS RELEASE
USGS NATIONAL OCEANIC &
ATMOSPHERIC ADMINISTRATION

..-f’"‘ science for a changing world
U.S. GEOLOGICAL SURVEY

--June 20, 2017 -

NOAA, USGS and partners predict third largest Gulf of Mexico
summer ‘dead zone’ ever

Federal scientists forecast that this summer’s Gulf of Mexico dead zone — an area

of low to no oxygen that can kill fish and other marine life — will be approximately
8,185 square miles [21,199 square kilometers], or about the size of New Jersey.

-- August 2, 2017 -
Gulf of Mexico ‘dead zone’ is the largest ever measured

Scientists have determined this year’s Gulf of Mexico “dead zone,” is 8,776
square miles [22,720 square kilometers], an area about the size of New Jersey.
It is the largest measured since dead zone mapping began there in 1985.



Press Releases of Forecast and Measured Size

Page Title
Homepage
East Coast storm born from ‘bombogenesis'. It's less scary than it sounds.
2017 was 3rd warmest year on record for U.S.
NOAA: 2017 was 3rd warmest year on record fcr the globe
Snow squall warnings to begin this winter
NOAA kicks off 2018 with massive supcrcompuicer upgrade
U.S. Winter Outlook: NOAA forecasters predict cooler, wetter North and warmer, drier South
How do snowflakes form? Get the science behind snow
Globe hzd 3rd warmest year to date and 5th warmest November on record
Extremely active 2017 Atlantic hurricane season finally ends
New stom surge watches and warnings saved lives /
NOAA's GOES-16, now at GOES-East, ready tc improgeforecasts even more
Gulf of Mexico ‘dead zone’ is the largest ever mzasured
Q&A: Winter weather forecasts, from our national centers to your neighborhood
Photo story: Rescued seals make it home for the holidays
6 tools our meteorologists use to forecast the weather
Scientists: Strong evidence that human-caused climate change intensified 2015 heat waves
Whale science on the high seas
Deepwater Horizon oil spill settlements: Where the money went
What is a harmful algal bloom?

Pageviews

6,052,199
39,112
8,289
“8,137
‘4,383
“3,754
0,589
7,654
5,196
5,145
5,078
4,356
3,578
2,740
2,205
2,192
1,939
1,485
1.484
1,270

Avg. Time on Page
0:03:50
0:01:50
0:02:25
0:02:29
0:02:01
0:02:29
0:02:32
0:06:19
0:01:49
0:04:32
0:01:22
0:01:14
0:06:43
0:01:25
0:01:48
0:07:47
0:05:19
0:02:03
0:10:38
0:06:52

Bounce Rate
11.63%
67.12%
72.97%
70.75%
78.23%
86.47%
81.25%
84.51%
64.71%
79.70%
73.85%
75.23%
78.12%
73.37%
80.14%
73.87%
91.41%
65.22%
75.92%
81.13%



Summary

* Providing management guidance built on years of research that
developed a series of linked statistical, two-dimensional and three-
dimensional models and supportive field efforts that:

— couple the Mississippi River watershed with the northern Gulf of
Mexico,

— explain diverse synergistic influences on the physical and
biological factors in the northern Gulf that control the development
of hypoxia, and

— provide improved forecasting tools to inform hypoxia mitigation
strategies.

 Recent emphasis on transitioning of monitoring requirements and
modeling tools to operations

« Strong network of researchers, managers, and stakeholders, and
extensive outreach at multiple levels



Ecological Impacts — Kevin Craig Talk

Coupling between hydr/biogeoch models and ecological models is
needed to capture environmental forcings of hypoxia and its effects;
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The End

* Nextup -

Don Scavia (University of Michigan). Hypoxia modeling,
relationship with nutrient loading, water quality targets, and
transition planning (Chesapeake Bay, Lake Erie, Gulf of Mexico)




Monitoring Requirements are driven by Management Products

3-D Time Variable Hypoxic Zone
Management Need: Provide comprehensive space/time Characterization

characterization of hypoxic zone and controlling factors
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Monitoring Requirements are driven by Management Products

: Scenario Forecasts that include
Management Need: Evaluate strategic management . :

. . . : R interactive ecosystem stressors
questions related to nutrient reductions including timing,
input location, nutrient type, and impacts of climate change
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Progression of Forecast Models

Predicted Areal Observed Areal
Year Modeler Extent (km?) Extent (km?)

2007 Turner 22.127 20,480
2008 Turner & Scavia 22,404 21,764
2009 Turner & Scavia 19,325 - 21,935 8,240*
2010 Turner & Scavia 16,861 - 20,233 18,400
2011 Turner & Scavia 22,049 - 24 438 17,680
2012 Turner & Scavia 3,371 7,480
Turner (sediment legacy effect) 16,117
2013 Turner & Scavia 18,900 - 22,207 15,120

*Persistent westerly winds for weeks before cruise “piled up” hypoxic water along SE LA shelf



Progression of Forecast Models

Predicted Areal Observed Areal
Year Modeler Extent (km?) Extent (km?)

2014 Turner & Scavia & Forrest 12,018 - 14,807 13,080

2015 Turner & Scavia & Forrest & 14,201 16,760
Obenour

2016 Turner & Scavia & Forrest & 15,276 I
Obenour

2017 Turner & Scavia & Forrest & 21,199 22,720
Obenour

*2016: model simulations of mid-summer areal extent were 13,900 km?
(ROMS) and 21,100 km? (FVCOM)



Project
CHRP: Observations and Modeling of Narragansett Bay
Hypoxia and Its Response to Nutrient Management

Observed and modeled responses
of Narragansett Bay
to managed
nutrient load reductions
under an engaged stakeholder process

Candace Oviatt and Daniel Codiga
Graduate School of Oceanography
University of Rhode Island

February 26, 2018
NCCOS Science Review
Silver Spring, MD




Project Investigators

* Candace Oviatt, GSO

* Daniel Codiga, GSO

* James Kremer, UCONN

* Jaime Vaudrey, UCONN

* Mark Brush, VIMS

* Scott Nixon, GSO

* Chris Kincaid, GSO

* David Ullman, GSO

* Warren Prell, Brown University
* David Murray, Brown University




Project Goals

* Advance understanding of nutrient loading and circulation processes
that dictate Narragansett Bay hypoxia, and assess their relative
importance;

* Implement multiple modeling approaches to develop tools for (i)
evaluating the response of hypoxia to alternative management
scenarios and climate change, and (ii) enhanced predictive
capabilities.

* Engage all stakeholder and make all information and tools available
to them on a regular basis.




Observational Program

* Document the nutrient reduction by measuring standing stock
concentrations of nutrients in the surface waters of Narragansett Bay;

* Document ecosystem productivity and hypoxia changes to nutrient
reduction;

* Measure physical parameters such as currents and vertical mixing to
improve the ROMS circulation model for Narragansett Bay.
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Results Observations

A.
May - October Total Nitrogen at Rl "11" Plants
Note that Warren WWTF is not included in the total nitrogen calculations from 2006-2010.
= 15000 12043 They would have added ~150 Ibs/day to the total nitrogen load.
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Decrease in Summer Chlorophyll

Mean Chlorophyll, pg I
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Primary production patterns in the Bay change with nitrogen reduction.
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Continued periods of low oxygen in the Bay
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Modeling Program

* Empirical modeling

* Refine material exchange methods in two ecological models using 1)
the ROMS circulation model and 2) a box model for circulation;

* Validate the General Ecosystem Model and the Ecosystem Box
Models;

* Model Management and climate scenarios and develop user-
friendly version of the model for use by managers.




Empirical modeling

Using time series D.O. obs. (Codiga et al. 2009)

Multiple linear regressions with observed biological/physical
parameters

* Temp, riverflow, spring/neap, stratification

Conclusion: Spring/neap weakly important

Conclusion: River flow (stratification) is strongest driver of inter-
annual variability




Simulation Modeling: Two Approaches

Estuarine Eutrophication Model
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WWTF, Atmosphere MODEL

Streams
ATM 02 R Groundwater
X WWTF
Rain - Evaporation
Fk ¢ X —>
PHYTO,
DIN, DIP,
0,5, BODy, ——|

O
g

.00, \
\
@ ~ wir clm \ BODw j< @
Resp \
|
TOTAL

N 4
an
- ULVA T\

BOD

o0 :

GRAC -

- R S
@@@ DECAY SED C CLAMS

WX P AMPHIPODS ?/

N
Q
)
©




MODEL RESULTS

Panel A - EcoGEM results Panel B - RIDOCS results
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Figure VB: (Panel A} Number of days predicted by the EcaGEM model where the bottom water oxygen
predicted minimum value is less than 2.9 mg/L. Model was run using the 2006 and 2007 nutrient inputs.
(Panel B} BIROCS values for 2006 and 2007, The RIDOCS results is a more complex formula involving
multiple criteria beyond the < 2.9 mg/L. Both figures use the same color scheme: 0-3 dark green; 4-9
light green; 10-29 yellow; 30-49 orange; =50 red.
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Figure V9: Projected number of days where instantaneous dissolved oxygen in bottom water is less than
2.9 mg/L. This scenario is the predicted results of target nitrogen reductions goals from WWTFs of 50%

relative to 1995, achieved in 2013. The two panels provide g high and low estimates of number of days
below 2.9 mg/L.
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Figure V10: Projected number of days where instantaneous dissolved oxygen in bottom water is less
than 2.9 mg/L. This scenario is the predicted results of target nitrogen reductions goals from WWTFs of

75% relative to 1995. The two panels provide g high.and low estimates of number of days below 2.9
mg/L. This is an additional 25% reduction over what was achieved in 2013. While modeled as

reductions to WWTF nitrogen inputs, these reductions could also be achieved in combination with non-
point source reductions.




Comparison of Output from EcoGEM and EcoOBM
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Fig. 1. Example tracer distributions by model element after a 24 hour simulation in
EcoGEM, using exchanges from ROMS (black) and the OBM (red), provided by ).

Vaudrey. Plots show the fraction of tracer starting in a given element (“Source Box',
numbers across the top), present in each model box after 24 hours ("Destination

Box’, x-axis). Box numbering is that used in EceGEM.
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EcoOBM Verification
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EcoOBM: Predicted decrease in low oxygen events with different levels of nutrient

reduction.
- Fig. 5. EcoQBM scenario
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Stakeholder Program

* Conduct targeted meetings with Environmental Mangers;

* Conduct an annual workshop to announce findings of the project
and engage advice from the stakeholder community.




Hypoxia Workshop October 2, 2006
Graduate School of Oceanography, URI
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Summary

Data observations indicate the 50% managed nutrient reduction was achieved and
resulted in a 30% reduction in primary production. A trend of a 30% reduction in hypoxia
is not yet statistically significant.

Two models have been developed to predict the summer low oxygen events in
Narragansett Bay. One uses the detailed circulation dynamics of the ROMs model

to predict oxygen during a wet and a dry year with different nutrient levels. The other
uses a coarse box model to predict circulation and can easily run annual oxygen
predictions with different nutrient levels. Both models have been inter-compared, data
verified and exhibit acceptable skill levels. Both models indicate that some hypoxia will
continue at a 50% reduction in nutrients and that a 75% reduction will be necessary to
further decrease hypoxia.

R | DEM managers have access to both models but for the time being prefer observations
to models. Thus we have the contract from RI DEM to maintain the DEM portion of the
monitoring network and manage data from the monitoring network of fixed sites and
buoys to assess water quality oxygen levels.

DEM continues to evaluate the impacts of the 50% nutrient reduction and faces criticism
From fishing industry interests for making the Bay “too clean”.




Evaluation Criteria for the Narragansett Bay CHRP program (2005-2016)

Quality: 48+ presentations; 28 publication; 6 PhD dissertations; 3 Master’s Theses;
EcoGem User’s Guide, Jaime Vaudrey

Online EcoOBM, Mark Brush

Relevance:

1-Up-to-date information on nutrient concentrations, primary production, water clarity,

bay circulation, and summer hypoxia distribution, intensity and duration.

2-Two ecological and circulation models able to predict oxygen concentration spatially
and temporally in Narragansett Bay.

Performance:
Continuing stakeholder engagement (NOAA, NBEP, Baird Symposium, Rl C-AIM program,
RI DEM).
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Projects and Peer-Reviewed Papers

NGOMEX 2009: Effects of Hypoxia on Harvest Dynamics and Economics of the Shrimp
Fishery in the Northwestern Gulf of Mexico.

CHRP 2005: Linking Hypoxia-induced Habitat Degradation to Fishery Outcomes: A
Bioeconomic Approach Based on Brown Shrimp

FATE 2012: (leveraged): Effect of Shelf Hypoxia on the Gulf Menhaden Fishery and
Implications for Stock Assessment.

* Pls and Collaborators: Martin Smith (Duke), Kevin Craig (FSU), Lori Bennear (Duke),
James Nance (NOAA SEFSC)

* 18 peer-reviewed papers since 2010

NGOMEX 2009: Modeling Reproductive and Population Impacts of Hypoxia in the
Northern Gulf of Mexico.

* Pls and Collaborators: Peter Thomas, (UT), Kenneth Rose (LSU), Dubravko Justic (LSU),
Kevin Craig (FSU), Thomas Grothues (Rutgers).

e 24 peer-reviewed papers since 2011
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» Gulf hypoxic zone overlaps in time and space with:
* Region of highest productivity of fish and invertebrates
e Highest valued fishery in the Gulf (penaeid shrimp)
* Highest biomass fishery in the Gulf (Gulf menhaden)

> Little research on potential effects on managed resources (i.e., fisheries)
prior to early to mid-2000s



General Approach

Spatial responses to hypoxia
(avoidance, spatial distn)

4

Effects on population vital rates
(growth, reproduction, mortality)

Population-Level Effects

———

Management Applications



Brown Shrimp Spatial Distribution

Fishery-Independent SEAMAP Survey (June-July)
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Atlantic Croaker Spatial Distribution

Low to moderate hypoxia
(< 7,000 km?)

Scaled Catch Rate

1 4
J —&— Low Hypoxia
0.8 -
: —B& - Severe Hypoxia
0.6 -
0.4 -
0.2 Severe hypoxia
I (13,000-17,000 km2)
0

4-9
9-18 |©
18-27
27-43

43 64!’
A

\
64-110TI|

Depth Bin (m)




Aggregation Near Hypoxic Edge

1800 - 14000
1 O cpue o
160?:!: O 50th percentile 12000
wi 1400 - 75th percentile L O
- 1200 . ] = —— 90th percentile - 10000
o . o.
@) 95th percentile @)
-
== )
£ 3
£ <
vl
& O

-4 -2 0 2 4 6 8 10 12 14 16 -4 -2 0 2 4 6 8 10 12 14 16
Distance to Edge (km)

1800
1600
1400 w
Wl 1500 D &
e-) 1000 ‘:
e 800 &l g
g_ O o 0 O e
) =
om
,—.DD - g- Ll s "!".? O dl 5 2 z == Spde il et I
-4 -2 0 2 4 6 8 10 12 14 16 -4 -2 0 2 4 6 8 10 12 14 16

Distance to Edge (km) Distance to Edge (km)



Spatial Responses to Hypoxia

> Mobile organisms effectively avoid low DO
« Field-estimated avoidance thresholds range from 1-2 mg L1 across species
» Avoidance thresholds are above laboratory-based lethal thresholds

» Sub-lethal and indirect effects are important
« Organisms occupy moderately low DO (2-4 mg L1) in the field
* Occupy DO levels where sub-lethal effects observed in lab
« Habitat loss induces strong aggregations near hypoxic edges

» Primary Limitation
« Based mostly on point-in-time surveys
« Spatio-temporal dynamics of organism (and fishery response) to seasonally
dynamic oxygen conditions not well-known

Craig et al. (2010, 2012, 2013)



General Approach

Effects on population vital rates
(croaker reproduction)

Population-Level Effects




Reproductive Impairment of Atlantic Croaker
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Hypoxia Effects on Croaker Reproduction & Growth
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> Masculinization of females

* Sperm detected in 25% ovaries
* Decrease in aromatase activity
e Thomas and Rahman (2011)
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Atlantic Croaker Population Model

Project long-term popn consequences of hypoxia exposure

* Spatially explicit, IBM
— Follows 7 stages to age 8
— September 1 birthday
— Model year begins Sept. 1 ¢ Ocean Larva
— Each year 365 days long -

. Yolk Sac Larva 1" Late Juvenile (< 180rfim)
* Hourly processes ' an !
— Growth iy i o
— Mortality

— Reproduction
— Movement (routine & avoidance)

* Environmental conditions simulated on a 2-D spatial grid
— Climatological temperature
— Climatological surface Chl-a
— Dissolved oxygen from 3-D hydrodynamics-WQ model



Dissolved Oxygen

31.0 1 1 1 L 1 1 1

» Grid encompasses La. and N.
Texas coast _—

» 3-D coupled hydrodynamic-
water quality model

* FVCOM + WASP
) 1_10 km horizontal -95.0 -94.0 -93.0 92.0 -91.0 -90.0 -89.0 -88.0
* 0.2-2.0 m vertical BRI

Latitude (degrees)

28.0

e (Calibrated and assessed
using multiple independent e i & g _
data sources for 2002 T e A e B s g

Time (days, May 1 ~ October 4, 2002}

DO (mg [

Justic and Wang. 2014. Continental Shelf Research
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Midyear snapshots of predicted bottom DO
(FVCOM interpolated to the IBM grid)

June 15th July 16th August 16th




Baseline

Severe

2002

Croaker Avoidance
(July 16t)

DO (mg/L) Abundance [In(fish / 10 km2)] ~ SEAMAP Croaker Distn




Hypoxia Effect on Long-Term Population Abundance
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Year

 Random times series of idealized ‘severe, ‘moderate,” and ‘mild’ hypoxic years in
proportion to their historical occurrence

* Response dominated by the effect of reduced fecundity Rose et al. (2017a)



Nutrient-Hypoxia Tradeoffs

increase DO due to

Normoxia ;
reduced nutrients
/] #15 7

I5 _+1.0

= PD

E po—

+ -

N +0.50

() +0.25 —

< 25% Nut

61 PD:Present day food and hypoxia conditions
Normoxia: present day nutrients and no hypoxia

0 20 40 60 80 100 120 140
Model Year

Magnitude of hypoxia effect is larger (~¥25% decline) with the more realistic DO (blue)

Reductions in nutrients result in further croaker declines due to decreased food (red)

These reductions in food availability can be offset by relatively modest increases in DO
associated with the lower nutrients (gray lines)

Pos. effect of reduced hypoxia outweighs neg effect of reduced food (preliminary conclusion)
Rose et al. (2017b)



Watershed
Shore boundary
Shore boundar DLEM

NGOMEX 2016 (new) e 1| wmoers

D. Justic (LSU), K. Rose (UMCES), E. MR Delta
Meselhe (Water Institute), H. Tian H‘{: : _‘1'

(Auburn), J. Xu (LSU), L. Huang (LSU), K. I ST
Craig (SEFSC)

Water Quality e | 5
WASP

» Link IBM to 3D FVCOM and WASP models , e .
* Predictions of Chl (food availability) and DO !

* Potential for vertical movement 'Ei';"ois"ezvggg'we:w Otff—grid fotr
stages no

Exposure- exposed
Effects

» Link watershed and river diversion models (DLEM

and Delft 3D) to FVCOM O (e) (E) ()
* supply nutrients and water flow to FVCOM 0“0 °“G 0“0 0“0
* Evaluate diversion scenarios 0 ° a 0

Croaker Menhaden Red snapper Shrimp
» Coupled models allow for more seamless | |

evaluation of nutrient-hypoxia tradeoffs | -

Scenarios and Cross-
Species Comparisons

> Expand to additional species (Gulf menhaden, |Margement —
: Sl e ~ | Application PI
brown shrimp, red snapper)
Managers’ .
Workshop Communication of
Results to Management




General Approach

Effects on population vital rates
(fishing mortality)



How do Fisheries Respond to Hypoxia?

Mine existing fisheries datasets:

» Electronic logbook data on shrimp vessel tow locations

 Maintained by NOAA SEFSC Galveston Lab (2005-2010)
 Random sample of vessels with recorded trawl set locations over the fishing season
(April to October)

e 17,843 —53,242 individual shrimp trawl locations per year

» Gulf Menhaden Coastal Logbook Program

 Maintained by NOAA SEFSC Beaufort Lab
* 100% catch and effort reporting since 2006
e 75,132 purse seine set locations (2006-2009)

» Merge with survey or model estimates of dissolved oxygen

* Brown Shrimp: SEAMAP survey estimates of bottom DO
* Gulf Menhaden: WQ model output (Fennel et al. 2013)

» Test for effects on fishery response variables (e.g., effort, catch,
CPUE) using geospatial regression models



Two Key Finding

» Fishing fleets are responsive to hypoxia (or hypoxia-induced
effects on target species)

» These shifts in spatial distribution influence catchability (q),
or the proportion of the stock harvested by a given unit of
fishing effort—key parameter of stock assessment models



Hypoxia Effects on the Shrimp Fishery

(Results from Geospatial Regression Model)

Texas Shelf (reference site) 2005-2010  Louisiana Shelf (treatment site)
Galveston Bay ‘ 310
29° — . i
N N
i I ENNNY )
-0000000 30°
00000 =
-0 0000 <
o o 0@ - -
0000009 |
‘XX X
00 DO (mg-L™") 29°
00 @ Wo-1 Effort change
: : : 1.2 (hrsimg-L-") |
- m2-3 © <0.05
0060 3.4 o 0.05-0.125
0 C 4-5 O 0.125-0.20 28° —
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° -96° -95° -94° -93¢ -94° -93° -92 -90° 89
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Slope of Spatially Varying DO Effect

Decrease in effort when DO is low (positive slope)

Blue: Increase in effort when DO is low (negative slope) purcell et al. (2017)



Gulf Menhaden Fishery

« Second largest US fishery by weight (0.5 million metric tons annually)

* Fishery extends from April to November but peaks in June-July

* Mostly prosecuted close to shore (within 5 miles)

 Merged with DO predictions from coupled hydrographic-
biogeochemical model (Fennel et al. 2013)
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GULF MENMADEN
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Shift in Spatial Distribution of the Menhaden Fishery
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Under low DO conditions:
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Decrease in catch and effort in regions typically experiencing chronic hypoxia

Fleet shifts westward, inshore, and eastward when hypoxia is severe

Langseth et al. 2014)




What are the economic consequences to the
shrimp fishery?




Shrimp Bioeconomic Modeling
Led by Marty Smith (Duke)

Brown shrimp life history

No’j’y = M gj'y)gj e A e Hypoxia Adjustments
Nijy = NgjyeZs Mst2s~fs Survival = (1+A,)m,
my = B(Ly)P Natural Mortality

ft = qE; Fishing Mortality qc = (1 +44)q

Ly = Lo, (1 — e79Y) Growth

w, = w(L,)Y Allometric (length to weight) 6 = (1 —As5)6
t— t

ft
H, = 1—e OHw,N
t ft+mt( e )Wt ¢+ Harvest
Microdata:

e Requires high resolution data on shrimp catches and environmental conditions
over the course of a fishing season
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Neuse River Estuary (NRI L G

« Shallow, wind-driven system

« Seasonal hypoxia (May-Sept)

« hypoxia is highly episodic

* Daily

ticket program)

* Daily

252

Hypoxia Bfects (% in Ibs)

oS

25%

shrimp catches (NCDMF trip

Hypoxia Hfects (% in |bs)

DO (USGS moorings)

o2

20%%
15%
109

5%

19

2026

15%

1026

5%

409

5%
S0 o

e Main Results from North Carolina

Neuse River

—#— Differenced rmodel

— B — FPDL model

Year

a9 2000 2001 2002 2003 2004 2005

o b Pamlico Sound

- - —— =
~ /\ _m—

—#— Differenced model

— B — POL rmaodel

Yeal

19399 2000 2001 2002 2003 2004 " 2005

Harvest losses from hypoxia (1999-2005):

» Avg losses of 13-21% across the range of models considered (compared to no hypoxia)

» For Neuse-Pamlico system $1.2 million in lost annual revenues

» Modeling fisher participation (respond to abundance and price) suggests behavioral
adjustments can partially mitigate this loss

4% annual loss in revenue ($0.3 million annually)

Huang et al. (2010, 2012)



Is this approach transferable to the Gulf?

No....resolution of catch and DO data not sufficient

Key findings from spatially dynamic bioeconomic model:

1. Net effect of all three processes (g, growth, mortality) on total catch can be pos or
neg and vary depending on when in the season the system is observed

2. Even with perfect info., detecting hypoxia effects in catch data would be difficult

3. No counterfactual (i.e., control)--What would happen in the absence of hypoxia?
Shrimp fleet highly mobile and trips can extend over several weeks
Contamination of potential controls (e.g., Texas fishery)

(Smith et al. 2014. Marine Resource Economics 29:111-131)

Expect increased harvest of small relative to large shrimp
Catchability, growth, and mortality skew size distn to smaller sizes

Do size-based shrimp prices contain info. on the effects of hypoxia?



Size-Based Prices of Brown Shrimp

10

—_—15

—15-20
20-25

—25-30

$/pound

= 30-40

IS

40-50
50-67

Ay

]
1980 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

Shrimp are sold in size-based categories based on the number of shrimp per pound
Price per pound of large shrimp is higher than for small shrimp (different economic value)

Relative size-based prices are stable in the long-term so that short-term deviations in relative price
should be random in the absence of intervening effects

Shrimp prices provide a market-based counterfactual against which to test effects of hypoxia

Smith et al. (2017)



Seafood prices reveal impacts of a major January 2017
ecological disturbance

Martin D. Smith®*®", Atle Oglend®, A. Justin Kirkpatrick?, Frank Asche“Y, Lori S. Bennear®®®, J. Kevin Craig',

and James M. Nance®

*Micholas School of the Environment, Duke University, Durharm, NC 27708; "Department of Economics, Duke University, Durham, NC 27708; “Department of
Industrial Economics, Universty of Stavanger, 4036 Stavanger, Norway; “Institute for Sustainable Food Systerns, Schiool of Forest Resources and Conservation,
University of Florida, Gainesville, FL 326110240, ®Sanford School of Public Policy, Duke University, Durham, NC 27708; "National Marine Fisheries Service,
Southeast Feheries Science Center, Mational Oceanic and Atmospherc Administration, Beaufort Laboratory, Beaufort, NC 28516 and SNational Marine
Fisheries Service, Southeast Feheries Scence Center, National Gceanic and Atmospheric Administration, Galeston Laboratory, Galveston, TX 77551

PNAS

Demonstrated effect of hypoxia on a major
commercial fishery

> Main result:

et categries for g () # shrimpro.

* When hypoxia is severe, prices of large shrimp increase relative to small shrimp (growth
overfishing is a key mediating process)

* Result is consistent with known or hypothesized mechanisms: catchability, growth, and
mortality skew size distributions to smaller sizes so that fewer large shrimp are available

e Cannot separate out the relative importance of alternative mechanisms with this analysis

* Magnitude of the effect is unknown, but regression model suggests 1000 km? increase in
area hypoxia triggers a 1% increase in the relative price of large shrimp



Effects on the Gulf Menhaden Stock Assessment

Key Result: Hypoxia may bias management advice from stock assessment models
(Underestimate fishing mortality and overestimate stoc biomass)



Simulate the Gulf Menhaden Stock Assessment

Catchability (q):
* Avg proportion of a stock harvested by a given unit of fishing effort
* Key parameter of stock assessment models used to set catch limits

l 4 patterns in g

Proportional to area (Obenour et al. 2013) % Fleet affected:
o .

O{Pcerating_l_mslilel \/\/\/\/\/\/\/\/ * 31% (Langseth et al. 2014)
Lo  100% (max effect)

(2013 assessment)

Step increase in
1993

—_—

Gradual increase

Generate data

Estimation model
Back-calculated from the assessment assume constant q

\/\Xx\/——\,\_/\ as in current assessment




Effects on Fishing and Biomass Reference Point

Area Magnitude Estimation type

» Not accounting for effects of hypoxia:
* Fishing mortality (F) biased low
* Spawning biomass (SSB) biased high
* Magnitude of effect is highly uncertain

(%)

absolute relative error

Mean
0 10 20 30 40 50 60

» Potential leads to risk-prone management advice

31% 100% Low High Constant RW
Groupings

F30% reference point SSB30% reference point
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Hypoxia Scenarios Langseth et al. (2016)



NGOMEX 2016 (new)

D. Obenour (NCSU), K. Craig (SEFSC)

» Primary limitation to understanding hypoxia effects
on fisheries is the lack of empirically-based, high
resolution DO data

» Obijectives:

3300
3200 !

R ———— e
3200
3300
3200
3300
3200 JEH
3300

3200 39

(km) 400 500 600 700 800 400 500 600 700 800

%
0 20 40 60 80 100

* Geostatistical modeling of available DO data to generate within-season

spatial maps of DO

e Fusion of geostatistical and mechanistic model results to develop optimal
estimates of hypoxia through time and over multiple sections of the

Louisiana-Texas Shelf

* Re-evaluate hypoxia effects on the Gulf Menhaden assessment model

* Extend approach to the Brown Shrimp assessment



General Approach

Management Applications



Stock Assessment Process for Federally-
Managed Species

SEDAR (Southeast Data, Analysis, Review)

Data Data Workshop: Assemble, QA/QC, Discuss/Summarize

4

Indices of abundance, life history (growth curves, maturity ogives), natl mortality

Analysis

4

SEDAR Process:

. Assessment Assessment Workshop: Stock Assessment Modeling
Takes about one year (Catch-age models, Production models, data-limited)

e Highly structured y
* Currently does not consider hypoxia
. Purpose: Report Summarize Results
» Determine stock status (overfished, 4
overfishing) Review | Review Workshop and SSC review

* Establish re-building plans
» Set short term (1-3 year) catch levels

See http://sedarweb.org/ Management

Menhaden simulation study led to alternative modeling approach that implicitly
accounts for hypoxia effects

4



Gulf of Mexico Ecosystem Status Report (ESR)

ESR develops and tracks ecosystem drivers, pressures, and state across multiple

2017 ECOSYSTEM STATUS REPORT UPDATE FOR THE GULF OF MEXICO

Mandy Karnauskas, Christopher R. Kelble, Seann Regan, Charline Quenée, Rebecca Allee,
Michael Jepson, Amy Freitag, J. Kevin Craig, Cristina Carollo, Leticia Barbero, Neda

Trifonova, David Hanisko, and Glenn Zapfe

INTEGRATED SOCIO-ECOLOGICAL SYSTEM OF THE GULF OF MEXICO

~, Human Wellbsing
ystem Sacal Services, Busc Needs,
Ecas Status. z c
Seabirds, Pote cted Speces, A\~ @kmm: Secunty, iducston
< o= Heath, Safety, Sociai Connectedness

Species Interadtions, Primary ;

Productivity, F5h Abundance

Human Activities
" Fishing, Farming, Water Use,
Recreaton, Reseach,
Habitat Mamagement Energy Extracton
Masne, Estuarine,

Fmshwater, Sexgrazs

Opster, Atfical Hantat L ! Emnomic Institutons,
ﬁ Pt Sysems

QM O

Climate & Ocean Drivers
Climate, Sea-level Ree, Ocean
Currents, Hurricanes

U.S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
National Marine Fisheries Service
Southeast Fisheries Science Center
75 Virginia Beach Drive
Miami, Florida 33149

March 2017

http://www.aoml.noaa.gov/ocd/ocdweb/ESR_GOMIEA/

NOAA Technical Memorandum NMFS-SEFSC-706
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Figure 5.2. Average anmual dissolhved oxygen concentration values for the Louisiana (left) and Texas
(right) coastal shelf. in summer (top) and fall (bottom).
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Figure 82 Species diversity metrics calculated from the SEAMAP survey. Metrics are reported
separately for Lovisiana (left) and Texas (right) waters and for summer (top) and fall (bottom)
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Gulf Integrated Ecosystem Assessment (IEA)

Ve SRS S Neperit (s s Movement toward EBFM in the Gulf
product of the Gulf IEA

NOAA Ecosystem-Based Fisheries Management
Policy Statement (published May 2016)

e Defines EBFM and its benefits

- eyt » Establish relationship to current legal
INTEGRATED: ECOSYSTEM ASSESSME authorities (e.g., MSA, MMPA, ESA, NEPA)
e Articulate guiding principles

Provide analytical frameworks to implement
ecosystem-based management '

» Is a decision-support process that synthesizes and NOAA Fisheries Ecosystem-Based Fisheries
analyzes diverse data and ecosystem model outputs ]
Management Road Map (published

_ _ _ November 2016)
+ Shares a common national framework, yet with regional

variation in implementation
+ Provides assessments of the ecosystem across and

within multiple ocean-use sectors

+ Is modular, iterative, scaleable, and adaptable

Gulf of Mexico Ecosystem-Based Fisheries
Management Road Map Implementation Plan
(currently in review)

+ http://www.aoml.noaa.gov/ocd/ocdweb/gomiea.html
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Levels of Ecosystem-Based Management

Soentific Advwce
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Singe Specin T
+ Shares a common national framework, yet with regional s ' 7

variation in implementation

+ Provides assessments of the ecosystem across and
within multiple ocean-use sectors

+ http://www.aoml.noaa.gov/ocd/ocdweb/gomiea.html



PROCEEDINGS

(@] . R Proc. R. Soc. B
THE ROYAL] % ogFirstCite doi:10.1098/rspb.2011.0529
SOCIETY « publishing

Published online

Extensive reproductive disruption, ovarian
masculinization and aromatase suppression
in Atlantic croaker in the northern
Gulf of Mexico hypoxic zone

Peter Thomas* and Md. Saydur Rahman

The University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas,

TX 78373, USA

Journal of Experimental Marine Biology and Ecology 381 (2009) S38-S50

Contents lists available at ScienceDirect

Journal of Experimental Marine Biology and Ecology

journal homepage: www.elsevier.com/locate/jembe

Biomarkers of hypoxia exposure and reproductive function in Atlantic croaker: A review
with some preliminary findings from the northern Gulf of Mexico hypoxic zone

Peter Thomas *, Md. Saydur Rahman

Marine Science Institute, University of Texas at Austin, 750 Channel View Drive, Port Aransas, TX 78373, USA

Marine Environmental Research 69 (2010) $59-562
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Contents lists available at ScienceDirect “Marine
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Marine Environmental Research

journal homepage: www.elsevier.com/locate/marenvrev

Region-wide impairment of Atlantic croaker testicular development and sperm
production in the northern Gulf of Mexico hypoxic dead zone

Peter Thomas *, Md. Saydur Rahman

University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, Texas 78373, USA




Estuaries and Coasts (2018) 41:233-254 @ CrossMark
DOI 10.1007/s12237-017-0266-6

Modeling the Population Effects of Hypoxia on Atlantic Croaker
(Micropogonias undulatus) in the Northwestern Gulf of Mexico:
Part 1—Model Description and Idealized Hypoxia

Kenneth A. Rose'?(® - Sean Creekmore' - Peter Thomas® + J. Kevin Craig4 .
Md Saydur Rahman® + Rachael Miller Neilan®

Estuaries and Coasts (2018) 41:255-279 @ CrossMark
DOI 10.1007/512237-017-0267-5

Modeling the Population Effects of Hypoxia on Atlantic Croaker
(Micropogonias undulatus) in the Northwestern Gulf of Mexico:
Part 2—Realistic Hypoxia and Eutrophication

Kenneth A. Rose ' « Sean Creekmore' - Dubravko Justi¢' « Peter Thomas® «

J. Kevin Craig® - Rachael Miller Neilan® - Lixia Wang' - Md Saydur Rahman® .
David Kidwell”
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Hypoxia Avoidance Thresholds

Total CPUE percentiles
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Shrimpers Target Hypoxic Edges
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Example-1 yr Simulations

Growth only Catchability only
(Dynamic, nonlinear, subtle) (Non-monotonic) Growth, mortality and catchability

Catch with Hypoxia

Catch with Mypoxia
- Counteriactual Catch

‘ — Countersctusl Catch | 451

Pounds
_hl

Founds

10-dmy InCramant

Contamination of controls

E fiort with Hypois

* Net effect of hypoxia can be positive or negative . R

* Direction and magnitude of effect varies over the season

Effiort Mo Hypoxa
300 T T T

Mobility of shrimp fleet contaminants (nonhypoxic) controls = _—
! i ( vpoxIc) ” J/”“‘ K&M
:': _éIKTR'?—:E_ =0 3'&': E.E

Key Lesson: Detecting hypoxia effects from perfect catch data would be difficult



Time Series Modeling of Brown Shrimp Prices

Hypothesis: Relative price of large to small shrimp increases with
increasing hypoxia severity

Pt
PS t

= a+ PBHy; +y(Pse) + X (0) + €

Price . ge shrimp/ PriC&man shrimp = NYPOXia severity + covariates

Data
* Monthly sizes-based prices (1990-2010; 252 observations)

Covariates

e Hypoxic area and volume

* Diesel fuel price (influences effort--major driver of variable costs)

» Sea surface temperature (could influence supply, i.e., via recruitment)
* Monthly dummy variables

Permutations

* 3 separate large shrimp categories (<15, 15-20, 20-25 count)

* 3 separate (reference) small shrimp categories (30-40, 40-50, 50-67 count)
* Hypoxia area and volume via two alternative interpolation methods




Shrimp Fishery Electronic Logbooks

Merged with bottom DO from SEAMAP trawl and hydrographic survey

Fl trawl and hydrographic survey
(~300 stations/ yr)

Interpolate bottom DO from
annual SEAMAP surveys (June-

July)

Censor ELB data to match
temporal scale of DO
interpolation

Smooth interpolated surface to
account for uncertainty in DO
data and trawl path

Aggregate tow and DO data to 10
min x 10 min grid

Synoptic on a scale of 1-2 weeks
and 30-40 km
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Randomly selected 10% of ELB tows
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Partial Effect of DO on Shrimping Effort

(averaged over space)

Texas Shelf Louisiana Shelf
2005-2010
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Avoidance of limited areas of low DO Some avoidance of low DO
* Mouths of major estuaries * Hypoxia extends over most of shrimping grounds
* Extension of Miss. Plume west * Shrimpers active in and around low DO water

Purcell et al. (2017)



Hypoxia Effects on Fishing Mortality Reference Points

o Area Magnitude Estimation type
{n]

-]
Tp]

—— Langseth et al. (2016)
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Mean absolute relative error (%)
10 30

31% 100% Low High Constant RW
Groupings

* Magnitude of the effect is highly uncertain

 Maximum estimates of bias assuming effects persist over the entire fishing
season (May-Sept)

 Depends strongly on the proportion of the fleet affected by hypoxia

* Need better understanding of within-season spatio-temporal dynamics of
hypoxia and the fishing process



