Prevalence of Paralytic Shellfish Toxins in the Marine Food Webs of Coastal Alaska

Steve Kibler NOAA/NOS/NCCOS Beaufort Laboratory

Bruce Wright Knik Tribe of Alaska **Xiuning Du Oregon State University Rob Campbell Prince William Sound Science Center** Rose Matsui, Chris Guo & Coowe Walker **Kachemak Bay NERR Kris Holderied & Dominic Hondolero** NOAA Kasitsna Bay Lab Mayumi Arimitsu, John Piatt **USGS Alaska Science Center** Julie Matweyou University of Alaska Fairbanks/AK Sea Grant

Paralytic Shellfish Poisoning (PSP) in Alaska

50 um 600x magnificatio

PSP Toxins (PSTs)

Saxitoxins (STXs) Mussels, clams, oysters, crabs

Symptoms

Nausea, vomiting, diarrhea Headaches, dizziness, numbness Paralysis, death

FDA Advisory Limit

 $80 \ \mu g \ STX \ 100 \ g^{-1}$

Effects

Human illness Shellfishing closures Barrier to shellfish farming Seafood marketing impacts Effect on marine biota Alexandrium catenella

Ralonde, Trainer, Litaker, et al.

NPRB 1801 & Knik Tribe of Alaska

Objectives

- Develop STX screening and analysis capacity
- Characterize Alexandrium blooms & phytoplankton
- Zooplankton
- Forage fish
- Commercially important predatory fish Organs & Muscle
- Invertebrates
 Subsistence species
- Assess potential risks to: Higher level consumers Human health Seafood industry

Collection & Analysis

Collection

PlanktonSurface samples, Net towsForage fishesBeach seine, cast net, trawls, stomachsPredatory FishesSport catch, set net, fish processersOther InvertebratesIntertidal collection

<u>Analysis</u>

ELISA ScreeningThreshold of 10 μ g STX Eq. 100 g⁻¹HPLC Follow-up \geq 10 μ g STX Eq. 100 g⁻¹

Predatory Fish Alaskan Salmon <u>73 Analyzed</u> Digestive Organs Liver Kidney

Stomach contents

Muscle

Roe

Summary

<u>Overall</u>

Toxins in plankton, juvenile and forage fishes, predatory fish Highly variable in time & space Widespread low level toxicity in fish Commensurate with *Alexandrium* bloom intensity

<u>Salmon</u>

PSTs in digestive tract, excretory organs Very low in muscle meat & gonads

- Very low human health risk
- Little economic threat to seafood industry
- Higher risks to predators

More Questions

During intense *Alexandrium* blooms? What's worse? Higher toxin levels vs. Higher incidence Upper limit to body burden? Effect on fish?

Thank You

2019 data

SP = Sand Point

KC = King Cove

CL = Chignik Lagoon

AB = Auke Bay

PSTs in Marine Food Webs

Phytoplankton grazers

Small and large copepods Ciliates, rotifers, heterotrophic dinoflagellates Fish and invertebrate larvae

ومحاديد منهما وحد في محادثة وحد من الشروال و المراجع و

Trophic transfer of PSTs

Crabs & sea stars Predacious zooplankton Zooplanktivorous fish Shrimp & other invertebrates Seabirds Marine mammals

