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Introduction
If applied correctly, machine learning (and the subfield of deep learning) are a powerful
technology for automating tedious tasks previously performed by hand. Many industries,
including coastal management, have begun to see machine learning (ML) as a powerful tool to
standardize and speed data collection (Winans 2021). This document outlines the training and
evaluation procedures for a deep learning-based object detection model intended to detect large
shoreline stranded marine debris (>20 cm) in remotely sensed imagery. The model requires the
input imagery to have a ground spacing distance (GSD) of 2 cm, which is a typical resolution of
imagery collected from crewed aircraft or uncrewed aerial systems. Given these parameters,
this model should be capable of detecting shoreline stranded macro- to mega-debris at the
regional-to-global scale.

This document, the trained model, and all associated data, reports, etc. were funded by the
National Oceanic and Atmospheric Administration (NOAA) and Oregon State University as a
component of the project, Using Unmanned Aircraft Systems, Machine Learning, and Polarimetric
Imaging to Develop a System for Enhanced Marine Debris Detection and Removal1. The trained
model, associated code, and data are considered “free and open-source” for public reuse, remix,
and redistribution. Associated code for interacting with the trained model can be found at the
project’s Github repository2.

Key Challenges
The key challenges to deep learning-based object detection of marine debris objects are:

1. Marine debris objects tend to be small in size relative to the entire shoreline. Typically
marine debris objects only occupy a small fraction of pixels within aerial images of
shorelines.

2. Marine debris objects have a high variation in size, shape, color, and material. It is very
difficult to say a single type of debris is “representative” of all potential marine debris.

3. Aerial images of shorelines are highly complex scenes with multiple land cover types
(ocean, wet sand, dry sand, rock, dune, vegetation, etc.) and many naturally occurring
non-debris objects (driftwood, footprints, beach-goers, etc.). Any model must be able to
function over a wide range of geographies and imagery scenes.

Solutions
1. Crop input images to 512x512 pixels before performing object detection. This preserves

the size and shape of marine debris objects while increasing the ratio of object pixels to
background pixels in each individual image crop.

2 https://github.com/orbtl-ai/md-ml-api
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2. Choose an object detection framework with multi-scale feature maps. In such
frameworks the multiple feature maps are able to identify objects of various sizes.

3. Robust data augmentation is applied to the training data set images. These operations
will flip images, change their color, or otherwise change the image in some systematic
way. The new “augmented” scenes are then used to artificially increase the size of the
training data set. This helps the model make the most from the labeled training data.

4. Fine-tuning of the object detector’s aspect ratios during the object detector’s initial
anchor box proposal phase. The aspect ratios are set based on values commonly seen in
the training and evaluation data. This allows long, irregularly shaped objects to be
localized properly within the aerial images.

5. Initialize our training from state-of-the-art object detectors that are pre-trained on much
larger data sets (a technique commonly referred to as “transfer learning”). By transfer
learning we save time during the training process, allowing more iteration and
experimentation.

EfficientDet-d0 Object Detection
Framework
After many experiments and research hours, the best
overall object detection framework is EfficientDet-d0. This
framework was selected based on high performance
across many complex object detection challenges, high
efficiency, high performance on marine debris evaluation
data sets, and the ability to fine-tune multiple parameters
of the model to suit multi-scale geospatial object
detection.

The EfficientDet (Tan et al. 2020) architecture is a deep
learning-based object detection whose dimensions were
found by neural architecture search (NAS), an automated
method of designing efficient neural networks that tends
to outcompete the traditional hand-tailored neutral
architectures (Tan et al. 2020). The design of
EfficientDet-d0 means the network only has to “tune” 4
million parameters; far less than the 54 million parameters
to be learned in the previous best performing model on the
dar2015 marine debris data set (Winans 2021).

In addition to efficiency, the EfficientDet-d0 architecture has many desirable traits for geospatial
object detection. First, it ingests 512x512 pixel images, which is a desirable size for marine
debris detection at the 2cm scale (Winans 2021). Furthermore, EfficientDet-d0 utilizes
multi-scale feature maps which enable detection of variously sized objects (Figure 1).
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Hyperparameters
Hyperparameters are settings that can be tuned before training a deep learning model. Poorly
tuned hyperparameters can have a major impact on the performance of a deep learning model
so it is important to find the right combination to maximize performance. The full set of
hyperparameters for the tuned EfficientDet-d0 can be found in the associated pipeline.config
file. Below we detail the key hyperparameters whose calibration had an especially large impact
on our model’s performance.

Transfer Learning
The model was initialized from a set of pre-trained model weights served by Google in the
Tensorflow 2 Model Zoo3. This model contains pre-trained weights that were learned during the
Microsoft Common Objects in Context Object (COCO) Detection Challenge (Lin et al. 2015).
These pre-trained model weights allow our model to more quickly generalize to new types and
classes of objects.

Multi-scale feature maps
The default settings were left for the multi-scale feature maps after hyperparameter tuning.
Adding coarse scale feature maps did not aid in large object detection.

Anchor Box Aspect Ratios
EfficientDet begins the object detection routine by specifying a set of default “anchor boxes”
spread across the image. These anchor boxes come in all shapes and sizes. The ratio of an
anchor box’s height and width is it’s aspect ratio, and we can control our default anchor boxes’
aspect ratio during object detection.

Below in Figure 2 we have the count of each anchor box in our training data, which gives an idea
of a real-world range of aspect ratios for marine debris objects. The aspect ratios of our training
data largely cluster around 1.0 (a perfect square). However, the aspect ratio can be as high as
15 and as low as 0.02, which represent very skinny horizontal and vertical rectangles. Therefore,
we modify our input aspect_ratio hyperparameters from the values of [0.5, 1.0, 2.0] to a larger
range designed to properly capture the complete range of aspect ratios seen in our training data
set [0.1, 0.3, 0.5, 1.0, 2.0, 4.0, 7.0, 15.0].
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Batch Size
Batch size controls the number of images loaded into the computer’s memory on each training
step. A higher batch size is generally preferable as it allows for higher throughput and more
stable training. Batch size should be raised to the highest possible number that will fit within the
computer’s memory.

The final EfficientDet-d0 model detailed in this report utilized a batch size of 16 images when
training on a NVIDIA Tesla T4 Graphics Processing Unit (GPU) with 15 gigabytes of VRAM. If this
model is ever retrained on a different GPU in the future the batch size hyperparameter will need
to be raised or lowered based on the future GPU’s available VRAM.

Training and Evaluation Data

Source Data
The source imagery data for this project was collected in 2015 and provided by the State of
Hawaii and can be found at the Hawaii Statewide GIS Program4. Resource Mapping Hawai‘i
performed the initial collection of the imagery data under funding from the Government of
Japan PISCES. The initial marine debris annotations were digitized by Moy et al. 2017, adapted
for deep learning by Winans 2021, and further improved under this project. Please refer to these
two studies for in-depth processing history on the source labels and imagery.

Data Counts
The model was trained on 5,733 hand-labeled marine debris objects spread across 1,224 aerial

4 http://geodata.hawaii.gov/arcgis/rest/services/SoH_Imagery/Coastal_2015/ImageServer
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image chips of the Hawaiian Islands. The model was evaluated on 993 hand-labeled marine
debris objects spread across 184 aerial image chips of the Hawaiian Islands. The training data
was used to create the associated Tensorflow saved_model.pb file, while the evaluation data
was used to calculate the saved model’s performance (detailed in the Model Performance
section below). Tables 1 and 2 below provide a per-class count of marine debris object labels.

Table 1: Per-class counts of marine debris objects in
the dar2015v6 training dataset.

TRAINING DATA COUNTS

1 unidentified fragment 2426

2 plastic object 588

3 buoy 1269

4 fishing net 333

5 fishing line 211

6 metal 232

7 tire donut 298

8 wood board 334

9 wood pallet 17

10 vessel 25

TOTAL: 5733

Table 2: Per-class counts of marine debris objects in
the dar2015v6 evaluation dataset.

EVALUATION DATA COUNTS

1 unidentified fragment 351

2 plastic object 103

3 buoy 238

4 fishing net 55

5 fishing line 28

6 metal 36

7 tire donut 72

8 wood board 61

9 wood pallet 24

10 vessel 25

TOTAL: 993

Data Augmentation
Data augmentation flips, crops, distorts, the color, or otherwise changes the training images to
create “synthetic images” and artificially enlarge our training data set. This is a common
technique in deep learning, which greatly benefits from large training data sets.

The trained EfficientDet-d0 utilizes a full suite of data augmentations empirically proven to
enhance geospatial object detection:

- random_horizontal_flips: flips the image horizontally, so objects that initially faced east
in the image now face west.

- random_vertical_flips: flips the image vertically, so objects that initially faced north in the
image now face south.

- random_rotation90: randomly rotates the image between 0 and 90 degrees.
- random_distort_color: randomly distorts the color of an image, which helps the model be

invariant to color.
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- random_scale_crop_and_pad_to_square: randomly changes the scale of the image,
cropping and padding the re-scaled image so the shape of objects are preserved. This
benefits EfficientDet-d0’s multiscale feature maps.

Classification Scheme
The current model will make marine debris predictions according to a streamlined 10-class
scheme. The streamlined class scheme is designed to balance current technological
capabilities with real world management needs. See Table 3 below for a detailed breakdown of
the new streamlined 10-class scheme (called “v6” in this documentation) and how it differs from
the previously tested and more complicated classification scheme.

Table 3: A crosswalk from the original 16-class v5 class scheme to the streamlined 10-class scheme deployed in this
project’s final model. This crosswalk shows which classes were binned together to produce a model with the least
amount of class confusion while still providing as much detail as possible for marine managers.

v5 Class
Scheme

v6 Class
Scheme v6 Description

1
Unidentified
Fragment 1

Unidentified
Fragment

Indiscript fragments of objects. Predominantly plastic, foam, or cloth; but
could be any man-made material.

4 Foam

7 Cloth or Tarp

14
Wood
Fragment

16
Vessel
Personal

2 Plastic Object 2 Plastic Object Whole plastic objects such as large water jugs, beach toys, etc.

3 Buoy 3 Buoy
Fishing buoys of all shapes, sizes, and colors. Typically round but
occasionally oblong. With and without tails.

5 Fishing Net 4 Fishing Net Entangled fishing nets of all sizes and colors. Typically green.

6 Line Bundle 5 Fishing Line
Large bundles or individual fragments of fishing line of every size and
color. Typically white.

8 Line Fragment

9 Metal 6 Metal Metal objects. Whole and fragment. Often rusted.

10 Tire Donut 7 Tire
A whole, intact tire (with or without inner rim). Could also contain
obvious tire fragments (typically in crescent-moon shape).

11 Tire Fragment

12 Wood Board 8 Wood Board
An individual piece of plywood lumber (i.e. 2x4). The defining trait of
Wood Board is long, rectangular shape, even edges, and hard corners.

13 Wood Pallet 9 Wood Pallet A wooden shipping pallet. Whole and fragment.

15 Vessel 10 Vessel A large, powered vessel such as a boat.

The motivation behind the v6 classification scheme was to consolidate classes which simply
lack a large enough number of training labels to support reliable classification. Also, the current
model only utilizes three bands of spectral information (Red, Green, and Blue). It has been
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empirically shown that both humans and machines have trouble reliably distinguishing materials
from true color imagery alone (Winans 2021). For these reasons, we are attempting to
implement a classification scheme that is as reliable as possible while providing sufficient detail
for management purposes. See the “Performance by Class”  below for more information about
the class-by-class performance of the trained EfficientDet-d0 model on an evaluation dataset.

Model Performance

Figure 3: A line plot of every experimental model trained in the course of ORBTL AI’s experiments. Overall over 30 models were trained,
evaluated, and documented to arrive at the final model detailed below.

Quantitative Results
Accurately describing the benefits and drawbacks of a multi-class object detection model can
be difficult, as we are dealing with both localization and classification of objects within an
image. Therefore it is often helpful to use compound metrics which summarize the overall
performance of an object detector. Here are the primary metrics used to gauge the real-world
performance of the trained model:

- Intersection Over Union (IOU) is used to determine whether a prediction bounding box
properly localizes an object during evaluation. Our project utilizes a 50% IOU threshold
(0.5), this means our prediction must fit the real-world object’s shape and size.

- Mean average precision (mAP) is often used to describe the relevance of our model’s
positive predictions averaged over a series of recall values. This is the primary
compound metric used to evaluate overall model performance.

- Average recall for 100 detections (AR@100) computes the rate of positive detections
over all possible positive predictions. This metric is computed with up to 100 of the
highest confidence predictions in each photo.

Table 4 provides details of our model’s key performance measures at the top performing
training checkpoint.
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Table 4: The two key quantitative measures of our model’s performance at the best training checkpoint (44,000).

Metric Value at model checkpoint 44,000

mAP@0.5IOU 0.4914

AR@100 0.4943

Performance by Object Size
The addition of additional multi-scale feature maps improves EfficientDet-d0’s performance on
small and medium object detection localization. However, EfficientDet-d0’s performance on
large objects still lags that of other object detection frameworks, such as Faster R-CNN. This
tradeoff is worthy, as a majority of the marine debris objects in the data set fall in the small and
medium size categories. It is also notable that large object classes tend to contain the least
amount of labels, meaning it is possible that large object performance is constrained by the
smaller than average training data set. See Table 5 below for a full description of the object size
categories.

Table 5: A summarization of  mAP@0.5IOU across the three object size categories. The mAP values describe how
relevant each prediction is across each size class.

Size Class mAP@0.5IOU

Small Object (0.4 m2 or smaller) .2064

Medium Object (0.4 m2 - 3.7 m2) .2966

Large Object (3.7 m2 or larger) .1932

Performance by Class
During final evaluation (and on subsequent evaluations of new data) we can specify the
confidence threshold and IOU threshold at which to keep the model’s predictions. After
empirical study it was found that an IOU threshold of 0.5 (50%) and a confidence threshold of
0.3 (30%) provide the best balance in precision and recall rates. See Table 6 below for a detailed
breakdown of per-class precision and recall scores.

Table 6: The precision and recall scores for each class during the final
model evaluation. Only model predictions that exceeded 50% IOU and
30% confidence were kept.

9



class
precision@

0.5IOU/0.3CONF
recall@

0.5IOU/0.3CONF

1
unidentified
fragment 0.40 0.56

2 plastic object 0.51 0.33

3 buoy 0.65 0.54

4 fishing net 0.69 0.73

5 fishing line 0.40 0.36

6 metal 0.25 0.42

7 tire donut 0.72 0.85

8 wood board 0.34 0.34

9 wood pallet 0.67 0.50

10 vessel 0.52 0.48

Average
Precision/Recall: 0.51 0.51

False positives occur when the model flags a natural object as marine debris. False negatives
occur when the model misses a piece of marine debris. The false positive rate tends to increase
as the confidence threshold is lowered, while the number of false negatives drop. The opposite
occurs when the confidence threshold is raised. Therefore, the confidence threshold may be
lowered if it is desirable to lean towards overcounts of marine debris. Conversely, the
confidence threshold can be raised if it is desirable to lean towards undercounts of marine
debris. Overall there were 350 false positives and 254 false negatives at the 30% confidence
level.

Further, certain objects may be localized correctly in the imagery but their classification may be
wrong (i.e. a plastic object is misidentified as a metal object). These occurrences are referred to
as class confusion, which negatively impacts model performance metrics. Below is a class
confusion matrix, which shows both the total counts and percentages of classified objects
(Figure 4). Note that Figure 4’s right column and bottom row both represent an eleventh
“nothing” category. This category only exists in the confusion matrix for the purpose of
displaying false positive and false negative rates on a class-by-class basis.
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Figure 4: A class confusion matrix showing the final count and percentages of correctly and incorrectly classified
objects per class. Note that the right column and bottom row represent false negatives and false positives respectively.
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Qualitative Results
The associated evaluation-plots/ folder contains plots of all 184 evaluation images with model
predictions. In the plots the red boxes are ground truth, while the predictions are colored by
class with class name and confidence score included. These plots can be used to get a
qualitative feel for the model’s performance. See Figure 5 below, which is an example of an
evaluation plot.

Figure 5: Evaluation plot with model predictions for the image maui_16644_31_40.jpg. Ground truth (hand labels) are
drawn in red.

Loading the Model
The model was trained and evaluated in Tensorflow Object Detection API v2.4 (Huang et al.
2017). The format of the saved model is the Tensorflow saved_model format. Refer to the
official Tensorflow documentation for further instructions on loading the saved model5 to run
evaluation jobs.or fine-tune the training.

5 https://www.tensorflow.org/guide/saved_model
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