

Effects of Ammonia on Corals and Sea Urchins

Dr. Cheryl M. Woodley

Key Species & Bioinformatics Branch Coral Health & Disease Program

Athena R. BurnettCSS NOAA ContractorLisa A. MayCSS NOAA ContractorCarl V. MillerCSS NOAA ContractorZachary MoffittCSS NOAA Contractor

Volume 4; Key Species and Bioinformatics; p. 176 Fate & Effects of Contaminants Program Review, Sept 15-17, 2020

NCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Justification

MANAGEMENT ISSUE:

Ammonia toxicity data is insufficient to derive water quality criteria or water quality standards that are protective of coral reef resources.

Purpose

To evaluate whether the EPA water quality criteria (WQC) for ammonia is protective for coral reef organisms.

Objectives

- 1. Determine the <u>effect concentration range for adult coral</u> <u>nubbins</u> exposed to ammonium chloride.
- 2. Determine the <u>lethal concentration range</u> for Caribbean ESA <u>coral embryos</u> to ammonium chloride at two temperatures.
- 3. Determine the <u>effect concentration range for two species of</u> <u>sea urchin embryos</u> exposed to ammonium chloride.

Collaborators:

- **Dr. Margaret Miller NOAA Fisheries SEFSC** •
 - Collaborated on coral larvae experimental design
 - Provided training in coral fertilization and embryology
 - Provided logistical & diver support for gamete collections
- Dr. Dana Williams NOAA Fisheries SEESC
 - Provided logistical & diver support for gamete collections
- Mr. Chris Kavanagh NPS FL Bay Interagency Science Center
 - Laboratory space and lodging during field operations

Clients:

Ms. Jennifer Moore **Dr. Pat Shaw-Allen Dr. Andy Bruckner** Dr. C. Anna Toline Ms. Joanna Walczak Mr. Ken Weaver **Ms. Hilary Lohmann**

International:

NOAA Fisheries SERO Protected Resources NOAA Fisheries Office-Protected Resources Florida Keys National Marine Sanctuary NPS Region 2 South Atlantic Gulf Florida Dept. Environmental Protection Florida Dept. Environmental Protection USVI Dept. Planning & Natural Resources

Sustainable Grenadines Tobago Cays Marine Park Parques Nacionales Naturales de Colombia Oceanario Islas del Rosario Colombia

Photo: Allan Bright

SINCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

Methodology

1. Tissue Regeneration Assay (wound healing)

- Replicated NH₄Cl doses: 0.13—2.6 mg/L TAN
- Fragments imaged daily
- Daily static treatment renewal 10 d exposure
- Water quality measurements daily: salinity, pH, temp., ammonia
- Image analysis for growth rate or % healing

2. Early Life Stage Fertilization & Survival Assays

In situ gamete collections

Ex situ gamete collections

- Gametes collected, processed and fertilization efficiency determined
- Replicated NH₄Cl doses: 0.26—2.6 mg/L TAN
- Water quality measured 24 & 48h pH, temp., salinity, ammonia
- Treatments refreshed @ 24h
- Embryos enumerated microscopically @ 24-48 h

Acropora palmata embryos

Methodology

3. Sea Urchin Embryo Development Toxicity Assay

- Sea urchin gametes are collected, washed and counted.
- Ova are fertilized (≥95 % fertilization efficiency needed).
- Water quality measurements initial and 48 h
- Embryos incubated 48 h to pluteus stage and formalin fixed.
- Embryos scored for % normal development microscopically

Results

Control

SINCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

1. Laceration Regeneration Assay (wound healing)

0.13 mg/L

Control 1.95 mg/L 2.6 mg/L

- LOEC = 1.3 mg/L TAN
- Loss of tissue and auto-fluorescence observed at 72 h in 2.6 mg/L TAN
- Tissue regeneration arrested at 72 h in 1.95 mg/L TAN
- EC₅₀ = 0.86 mg/L TAN

2. Early Life Stage Fertilization & Survival Assays

- 2°C temperature increase, reduced toxicity threshold ~35 %
- 29°C
 - > LC₅₀ = 0.89 mg/L TAN
- > LOEC = 1.56 mg/L TAN
- 31°C
 - LC₅₀ = 0.58 mg/L TAN
 - LOEC = 1.04 mg/L TAN

Acropora palmata embryos

Results

SINCCOS NATIONAL CENTERS FOR COASTAL OCEAN SCIENCE

3. Sea Urchin Embryo Development Toxicity Bioassay

- Lytechinus variegatus development
- Arbacia punctulata development
- Arbacia punctulata fertilization

LOEC = 2.13 mg/L TAN LOEC = 2.08 mg/L TAN LOEC > 2.08 mg/L TAN

Discussion/Conclusions

Comparisons with existing National Water Quality Criteria (US EPA 1989):

Acute WQC Chronic WQC 0.223 mg/L UAN 0.035 mg/L UAN

- Coral nubbins: Acropora formosa EC₅₀= 0.095
 - Acute <u>unlikely</u> protective
 - <u>Chronic</u> <u>likely</u> protective
- **29 °C Coral embryos:** *Acropora palmata* LC₅₀ = 0.074
 - <u>Acute</u> <u>unlikely</u> protective
 - <u>Chronic</u> <u>likely</u> protective
- **31 °C Coral embryos:** *Acropora palmata* LC₅₀ = 0.055
 - <u>Acute</u> <u>unlikely</u> protective
 - <u>Chronic</u> <u>possibly</u> protective
- Sea urchin embryo development
 - Acute <u>unlikely</u> protective
 - Chronic likely protective
 - Arbacia punctulata LOEC = 0.174 mg/L
 - Lytechinus variegatus LOEC = 0.149 mg/L

Summary: Lethal and Effect Conc. of Unionized Ammonia Toxicity

Species	Time	Endpoint	Temp (°C)	UAN exposure range (mg/L)	UAN EC50 LC50 (mg/L)	UAN NOEC (mg/L)	UAN LOEC (mg/L)
Acropora formosa	10 d	tissue regeneration	26	0.008-0.302	0.095	0.152	0.231
Acropora palmata	48 h	larvae mortality	29	0.021-0.217	0.074	0.087	0.133
Acropora palmata	48 h	larvae mortality	31	0.024-0.249	0.055	0.049	0.100
Arbacia punctulata	0.5 h	fertilization	20	0.007-0.121	ND	0.121	>0.121
Arbacia punctulata	48 h	embryo development	20	0.0-0.267	0.174	0.103	0.137
Lytechinus variegatus	48 h	embryo development	23	0.005-0.149	ND	0.124	0.149

- 2 °C increase in temperature decreases the toxicity threshold by 35 % for *A. palmata* embryo survival.
- Considering ESA listed *A. palmata* larvae LC₅₀ are not protective, when setting Water Quality Standards.
- Results demonstrate a need to review current National Water Quality Criteria to protect vulnerable coral reef resources.

Applications and/or Products How data/results/technologies are shared:

Briefings & Data Sharing

- <u>NMFS Protected Resources on findings for use in consultations</u>
- EPA Office of Water to contribute to water quality standards that include coral
- <u>National Park Service</u> to assist in management decisions
- <u>Florida DEP</u>, Ken Weaver, for their Triennial Review of Florida's Water Quality Standards. Current standards do not consider coral species impacts.
- <u>USVI Dept. of Planning & Natural Resources</u>, Hilary Lohmann, to inform their water quality standards review. Current standards do not consider coral species impacts.

Training

- <u>Training workshop</u> conducted for toxicity bioassay tests with user groups i.e., citizen scientists, resource managers, students
- "<u>How-to</u>" videos for visualizing techniques and assays created and made available on the <u>www.cdhc.noaa.gov</u> website.

Public accessibility

- NOAA's Institutional Repository data, metadata, reports & publications
- NOAA's Coral Reef Conservation Program's CoRIS system Reports and manuscripts
- CDHC Website cdhc.noaa.gov

SCIENCE SERVING COASTAL COMMUNITIES

Future Directions

Study Specific

- Complete exposure studies for branching and mounding morphologies of ESA coral species
- Determine species sensitivity distributions
- Conduct multi-stressor experiments

Methods & Techniques

- Continually innovate to improve measurements, precision, accuracy, and insights
 - Exploratory proteomics (elucidating modes of action and diagnostic bioindicators)
 - Endocrine disruption
 - Genotoxicity
- Environmental chemistry
 - Increased in-house capacity needed
 - Instrumentation
 - Staffing needs

Strategic Research

- Ensure our work is mission oriented and issue driven
- Ensure our clients are active partners in our research

Questions?

SCIENCE SERVING COASTAL COMMUNITIES